
Fleet Operation Workspace Core
Integration Toolkit

User's Manual

I637-E-03

Copyright Notice

The information contained herein is the property of Omron Robotics and Safety Technologies, Inc. and
shall not be reproduced in whole or in part without prior written approval of Omron Robotics and
Safety Technologies, Inc.. The information herein is subject to change without notice and should not be
construed as a commitment by Omron Robotics and Safety Technologies, Inc.. The documentation is
periodically reviewed and revised.

Omron Robotics and Safety Technologies, Inc. assumes no responsibility for any errors or omissions in
the documentation.

Copyright 2022 by Omron Robotics and Safety Technologies, Inc.. All rights reserved.

Any trademarks from other companies used in this publication
are the property of those respective companies.

Created in the United States of America

Table of Contents

Chapter 1: Introduction 7
1.1 Intended Audience 7
1.2 Abbreviations and Terminology 7
1.3 Notations 8
Application Specific Placeholders 8

1.4 System Requirements 8
1.5 How to Get Help 8
Related Manuals 9

Chapter 2: Functions and Features 11
Communication Channels 11

2.1 RESTful Web Services 11
REST Communication Channel Advantages 12
REST Communication Channel Considerations 12

2.2 SQL with PostgreSQL 12
SQL Communication Channel Advantages 12
SQL Communication Channel Considerations 12
PostgreSQL Tables and Views 13

2.3 RabbitMQ 13
RabbitMQ Communication Channel Advantages 13
RabbitMQ Communication Channel Considerations 13

2.4 Software Management 14
2.5 Security 15
Integration Toolkit Password 15

2.6 Namekey Concept 17

Chapter 3: Getting Started 19
3.1 PickupDropoff Job - REST Example 19
3.2 PickupDropoff SQL Example 20
3.3 RabbitMQ Python Examples 20
Publish a Message to the inbound.PickupDroppoff Queue 21
Consume Messages of the outbound.Job Queue 22

Chapter 4: DataStore 23
4.1 Common DataStore Use Cases 23
4.2 DataStore Model 24

20964-000 Rev. C Fleet Operation Workspace Core Integration Toolkit
User's Manual

3

Table of Contents

DataStoreItem 24
SubscriptionConfig 24
DataStoreValue 24

4.3 Obtaining Information about DataStore Items 24
Using REST 25
Using SQL 26

4.4 Subscribing to DataStore Values 27
Using REST 27
Using SQL 28
Using RabbitMQ 28

4.5 Obtaining DataStore Values 28
Using REST 29
Using SQL 30
Using RabbitMQ 30

Chapter 5: Jobs 33
Job Creation Steps 33

5.1 Common Job Creation Use Cases 33
5.2 Job Creation 34
Creating Pickup Jobs 34
Creating PickupDropoff Jobs 36
Creating Dropoff Jobs 38
Creating Job Request Job Types (Multi-segment) 40

5.3 Monitoring of Jobs 44
Job Monitoring Schema Entities 44
Job Monitoring Details 44
Job Segment Monitoring Details 47

5.4 Job Segment Modification 50
Job Segment Modification Details 50

5.5 Job and Job Segment Cancellation 52
Job and Job Segment Cancellation Details 52

5.1 WaitTaskCancel 54

Chapter 6: AMR Data and Faults 57
6.1 AMR Data 57
AMR String Monitoring Details 57
AMR Status Monitoring Details 58
AMR Licensing Status 61

6.2 AMR Faults 63
AMR Fault Monitoring 63
AMR Fault Monitoring Details 63

4 Fleet Operation Workspace Core Integration Toolkit
User's Manual

20964-000 Rev. C

Table of Contents

Appendices 67
A.1 SQL Database Schema 67
A.2 REST Calls 67
A.3 RabbitMQ Queues 77

20964-000 Rev. C Fleet Operation Workspace Core Integration Toolkit
User's Manual

5

Table of Contents

Revision History

Revision code Date Revised Content

01 June, 2019 Original release

02 July, 2020 Updates for FLOW 2.0 release

03 March, 2022 Updates for FLOW 2.2 release

6 Fleet Operation Workspace Core Integration Toolkit
User's Manual

20964-000 Rev. C

Chapter 1: Introduction

This document contains information that is necessary to use the Integration Toolkit facilitating
integration between the Fleet Manager and the end user's client application.

Please read this document and make sure that you understand the functionality and per-
formance of the Integration Toolkit before you attempt to use it with a fleet of AMRs. Read
and understand all related manuals and safety guides before using the Integration Toolkit.

1.1 Intended Audience
This document is intended for the following personnel.

l Personnel integrating the Omron AMR solution with manufacturing execution systems
(MES), enterprise resource planning (ERP) solutions or other similar systems.

l Personnel familiar with Omron's fleet management software, AMR's, and the
EM2100 appliance.

l Personnel familiar with the Advanced Robotics Command Language (ARCL), RESTful
Web Services, SQL, or RabbitMQ.

1.2 Abbreviations and Terminology
The following abbreviations and terminology will be used throughout this document.

Term Description

AMR Autonomous Mobile Robot

ARCL Advanced Robotics Command Language

API Application Programming Interface

Client Application A warehouse management system, manufacturing execution sys-
tem, enterprise resource planning system, or similar application
that interacts with the Integration Toolkit.

EM2100 Appliance Hardware appliance which connects all Omron autonomous mobile
robots and runs the fleet management software.

Entity A basic object in the Integration Toolkit that contains data sent or
received to or from the Fleet Manager, such as a job or DataStore
value.

Fleet Manager Elements of the FLOW Core software that controls traffic, charging,
job assignment, etc. and collaborates with the client application(s)
to assign and manage tasks across the mobile robot fleet.

FLOW Fleet Operations Workspace

Omron's software suite that manages all autonomous mobile robot

20964-000 Rev. C Fleet Operation Workspace Core Integration Toolkit
User's Manual

7

8 Fleet Operation Workspace Core Integration Toolkit
User's Manual

20964-000 Rev. C

1.3 Notations

Term Description

navigation, safety, and fleet management functions.

IntegrationDB The primary database that includes all table views.

JSON JavaScript Object Notation

Job A basic activity for a robot to execute consisting of one or more
Pickup or Dropoff segments.

REST RESTful Web Services

SQL Structured Query Language

URI Uniform Resource Identifier

1.3 Notations
Programming code and syntax examples are used throughout this document. This text will be
indicated with the font shown below to distinguish it from other non-code text.

{
"example": "example",
"Example": 10,
"example_example": "p34",

}

Application Specific Placeholders

IP Address

The Fleet Manager IP Address is indicated with [IP] throughout this document as shown
below.

https://[IP]:8443

cURL String Options

Flags may be required in cURL strings for user credentials or other options. These options are
indicated as [options] throughout this document as shown below.

curl [options] -X POST "https://[IP]:8443/PickupDropoff" -H "accept:
application/json; charset=utf-8" -H "Content-Type: application/json; charset=utf-8"
-d "
{\"pickupGoal\":\"p5\",\"pickupPriority\":10,\"dropoffGoal\":\"p34\",\"dropoffPriorit
y\":20}"

1.4 System Requirements
The Integration Toolkit has the following minimum system requirements.

l EM2100 appliance
l Fleet Operations Workspace software version 1.0.0 or higher

1.5 How to Get Help
Find additional information on the corporate website: http://www.ia.omron.com.

http://www.ia.omron.com/

Chapter 1: Introduction

Related Manuals

There are additional manuals that describe how to program your fleet, reconfigure installed
components, and add other optional equipment. These manuals provide information about
safety, related products, advanced configurations, and system specifications.

Manual Title Description

Mobile Robot LD Safety Guide (Cat. No. I616) Describes safety information for OMRON LD
series AMRs.

Mobile Robot HD Safety Guide (Cat. No.
I647)

Describes safety information for OMRON HD-
1500 AMRs.

LD Platform OEM User's Guide (Cat. No.
I611)

Describes the installation, start-up, oper-
ation, and maintenance of the LD-60 and LD-
90 AMRs.

LD-250 Platform User's Guide (Cat. No.
I642)

Describes the installation, start-up, oper-
ation, and maintenance of the LD-250 AMR.

HD-1500 Platform User's Manual (Cat. No.
I645)

Describes the installation, start-up, oper-
ation, and maintenance of the HD-1500 AMR

LD Platform Peripherals Guide (Cat. No.
I613)

Covers peripherals for LD AMRs, such as the
Touchscreen, Call/Door box, and Acuity Local-
ization options.

Mobile Robots - HD Platform Peripherals
Manual (Cat. No. I646)

Covers peripherals for HD AMRs, such as
HAPS.

EM2100 Installation Guide (Cat. No. I634) Describes the installation and initial con-
figuration of an EM2100 appliance.

Fleet Operations Workspace Migration Guide
(Cat. No. I636)

Describes the procedures for migrating your
AMR from legacy to FLOW Core software, and
from an EM1100 to an EM2100.

Fleet Operations Workspace Core User's
Manual (Cat. No. I635)

Describes use of the EM2100 and the soft-
ware that runs on it for managing a fleet of
AMRs.

Fleet Simulator User's Manual (Cat. No.
I641)

Describes the operation of the Fleet Sim-
ulator.

Fleet Operations Workspace/ EM2100 Migra-
tion Guide (Cat. No. I636)

Describes how to upgrade or downgrade a
system between Legacy and FLOW Core solu-
tions which includes software upgrade pro-
cesses and tools as well as guidance on any
necessary hardware changes.

Advanced Robotics Command Language
Enterprise Manager Integration Guide (Cat.
No. I618)

Describes the Advanced Robotics Command
Language (ARCL) version for use with the
EM2100 software. ARCL is a simple text-
based command and response server used
for integrating the Fleet Operations Work-
space Core platform with an external auto-

20964-000 Rev. C Fleet Operation Workspace Core Integration Toolkit
User's Manual

9

10 Fleet Operation Workspace Core Integration Toolkit
User's Manual

20964-000 Rev. C

1.5 How to Get Help

Manual Title Description

mation system.

Advanced Robotics Command Language
Reference Guide (Cat. No. I617)

Describes the Advanced Robotics Command
Language (ARCL), which is a simple, text-
based language from which you can control
Omron's AMRs.

LD Platform Cart Transporter User's Guide
(Cat. No. I612)

Describes the operation and maintenance of
the Cart Transporter AMR.

Chapter 2: Functions and Features

The Integration Toolkit is Omron's interface application that enables integration between the
Fleet Manager and the end user's client application. This integration layer facilitates autonom-
ous control for a fleet of AMRs using standard communication methods.

It facilitates full management and monitoring of all AMR job types such as pickup, dropoff,
and multi-segment. The Integration Toolkit also allows tracking of AMR data directly and in
real-time.

The Integration Toolkit has a flexible architecture to provide multiple communication channel
options. These communication channels provide flexibility and choice in how a system inter-
acts with an AMR fleet and the Fleet Manager.

NOTE: The Integration Toolkit can operate in parallel with existing
ARCL communication. The Integration Toolkit does not replace ARCL for direct
AMR control (once it has reached a goal). Refer to the ARCL Reference Guide -
Mobile Robots and the ARCL Enterprise Manager Integration Guide for more inform-
ation.

IMPORTANT: Access to the Integration Toolkit is not possible until a password
is generated. Generate a password before attempting to use the Integration
Toolkit. Refer to Integration Toolkit Password on page 15 for more details.

Communication Channels

The Integration Toolkit offers 3 different communication channels.

l RESTful Web Services
l SQL with PostgreSQL Database
l RabbitMQ

NOTE: While it may be possible to achieve desired functionality with any one
of the communication channels, using a combination of them is suggested for
efficient integration with client applications.

2.1 RESTful Web Services
The REST communication channel is ideal for achieving real-time interaction with the Fleet
Manager. With this communication channel, a system can create, modify, and cancel jobs on
demand. The REST method allows access to other specific AMR data and can also provide job
history query functions.

Structuring of externally transferred data with REST is implemented with JSON for both cre-
ating requests and receiving data from the system.

The REST communication channel provides encrypted and secure interaction with the Integ-
ration Toolkit over HTTPS. Refer to Security on page 15 for more information.

20964-000 Rev. C Fleet Operation Workspace Core Integration Toolkit
User's Manual

11

12 Fleet Operation Workspace Core Integration Toolkit
User's Manual

20964-000 Rev. C

2.2 SQL with PostgreSQL

REST Communication Channel Advantages
l Low-latency interaction with the AMR fleet.
l Ad hoc access to DataStore values and job history data.
l REST is independent from platform or language type. REST does not rely on specific
drivers or libraries.

REST Communication Channel Considerations
l The RESTful API is hosted on the EM2100 appliance using port 8443.
l The client needs to provide a JSON data format as input for all POST calls and may
need a third party library to help create and process these strings.

l The SSL is implemented with a self-signed certificate which the client needs to trust.
l Most data entities can be accessed with the following paths:

1. /Stream: opens up a connection to receive updates as the entity changes (real
time).

2. /ByKey/{namekey}: returns entity information for entity with associated with the
given namekey.

3. /UpdatedSince?sinceTime={time millis}: returns all updates of entities since
time provided. A value of 0 can be used to get all updates (since epoch time).

l Certain data items are enumerated and correct syntax and schema of these items are
critical for proper functionality. Refer to the schema and examples in this document for
details.

NOTE: Audit (enumerated) items can be found in some schema
examples. These are reserved items that are used internally for the oper-
ation of the Integration Toolkit.

2.2 SQL with PostgreSQL
The SQL communication channel is ideal when database-level interaction with the AMR fleet
is necessary. PostgreSQL is a relational database management system where update, insert,
select, and delete commands are used to monitor and control an AMR fleet.

SQL Communication Channel Advantages
l Database-level interaction with an AMR fleet.
l Simple batch/bulk job creation.
l Complex SQL querying against the entire job history.

SQL Communication Channel Considerations
l When any action is requested through the SQL channel, there may be a delay of up to 5
seconds because the table or view in question must be polled by the system.

l PostgreSQL is accessed using the standard port 5432.
l Automation using the SQL communication channel is achieved through programming
languages and associated libraries such as PostgreSQL JDBC driver for Java. When
using the JDBC driver to connect, include the "sslmode=require" parameter in the con-
nection URL like this: "jdbc:postgresql://[IP]/IntegrationDB?sslmode=require”.

Chapter 2: Functions and Features

l Even though the Fleet Manager is storing data and is keeping a full history of job data,
it should not be considered secure in the way that a database server with redundant
disk capabilities would be. The Fleet Manager can be used to obtain data which can be
stored on an external system to act as a backup. The Fleet Manager's hard drive should
be considered a single point of failure.

l Certain data items are enumerated and correct syntax and schema of these items are
critical for proper functionality. Refer to the schema and examples in this document for
details.

PostgreSQL Tables and Views

SQL includes access to both tables and views. There is post insert / update logic in these views
which is executed, and controls how the data interacts with the system (in some cases impact-
ing multiple tables).

Views have a naming convention ending with "_view" (data_store_item_view for example).

IMPORTANT: Database interaction is only supported with views as described
in this document. Modifying or directly updating tables or the schema in gen-
eral is not supported.

2.3 RabbitMQ
The RabbitMQ communication channel is a robust method for monitoring and controlling an
AMR fleet.

RabbitMQ provides a management mechanism to ensure that all messages are delivered even
if a network problem occurs or a broker / client crashes. RabbitMQ can update a process run-
ning on an external system in real-time while also storing messages for future delivery if the
external application becomes temporarily unavailable.

Structuring of externally transferred data with RabbitMQ is implemented with JSON for
receiving data from the system.

RabbitMQ Communication Channel Advantages
l Asynchronous messaging with read / write capabilities.
l Incoming and outgoing message buffering.
l Simple monitoring for the AMR fleet.

RabbitMQ Communication Channel Considerations
l When using inbound channels (such as those used to create jobs), the system will need
to provide JSON of the same format used for REST.

l Libraries must be used and code must be implemented to send JSON-formatted data to
the RabbitMQ queue.

l A RabbitMQ management console is not available and some level of programming is
required to facilitate interaction with the system when using this channel.

l Most buffered messages expire after 12 hours. If the client application does not con-
sume these buffered messages before they expire, they will be lost.

20964-000 Rev. C Fleet Operation Workspace Core Integration Toolkit
User's Manual

13

14 Fleet Operation Workspace Core Integration Toolkit
User's Manual

20964-000 Rev. C

2.4 Software Management

NOTE: Buffered messages in outbound.datastore.X and out-
bound.datastore.robot.X (X is any subscribed DataStoreValue) queues
expire in 1 hour.

l Certain data items are enumerated and correct syntax and schema of these items are
critical for proper functionality. Refer to the schema and examples in this document for
details.

l The RabbitMQ port number is 5671.

2.4 Software Management
SetNetGo provides an area to manage the Integration Toolkit software installation. The fol-
lowing software management functions are available.

1

2

7654

3

Figure 2-1. Integration Toolkit Software Management

Chapter 2: Functions and Features

Table 2-1. Integration Toolkit Software Management Descriptions

Item Description

1 Select and upload a new FLOW Core software file (see note below).

2 The current version of the installed Integration Toolkit.

3 The operational status of the Integration Toolkit (Running or Not running).

4 Opens a dialog box to display the Integration Toolkit release notes.

5 Opens a dialog box to display the Integration Toolkit RunTime Log for dia-
gnostic purposes.

6 Restarts the Integration Toolkit services (see note below).

7 Resets the Integration Toolkit to default values.

IMPORTANT: This will delete and then rebuild the database.
All data will be lost such as job history and current job data.

NOTE: Integration Toolkit functionality relies on ARAMCentral operation. Any
action that stops the Integration Toolkit or ARAMCentral may have an impact
on data integrity and functionality. Pausing fleet activity during a planned soft-
ware stoppage is recommended.

2.5 Security
Integration Toolkit security is implemented in a common way for all communication channels.
A self-signed certificate is used to establish an encrypted connection between the client applic-
ation and the Integration Toolkit. A user id and password common to all communication chan-
nels are used for authentication.

This security mechanism is not optional and it is not possible to configure communications
without this encrypted connection.

NOTE: If there are concerns for the secure transport of the self-signed certificate
(since the client is not authenticating the certificate), then this certificate should
be moved, loaded, and trusted manually.

Integration Toolkit Password

To generate a new password, access the SetNetGo interface of the Fleet Manager with
MobilePlanner or a web browser. Refer to the Fleet Operations Workspace Core User's Guide
for more information about accessing SetNetGo.

The username for the Integration Toolkit is always fixed as "toolkitadmin".

IMPORTANT: A password is not set for a new installation of the Integration
Toolkit. Access to the Integration Toolkit is not possible until a password is gen-
erated. Generate a password before attempting to use the Integration Toolkit for
the first time.

Use the following procedure to generate a new Integration Toolkit password.

20964-000 Rev. C Fleet Operation Workspace Core Integration Toolkit
User's Manual

15

16 Fleet Operation Workspace Core Integration Toolkit
User's Manual

20964-000 Rev. C

2.5 Security

1

2

3

Figure 2-2. Set or Change Password in SetNetGo

1. After accessing the SetNetGo interface, click the Security tab.
2. Select the Integration Toolkit section within the security area.
3. Click the Generate New Password button.

IMPORTANT: When the Generate New Password button is pressed,
warning messages are displayed to indicate this action will cause a restart
of the Integration and Fleet Management services. Proceed only if a
restart is not problematic.

4. After the password is changed and the services restart, the new password is displayed
for recording. Copy this password and keep it in a safe place for future use.

Figure 2-3. New Password Display

Chapter 2: Functions and Features

2.6 Namekey Concept
Namekey is a unique identifier used both internally and externally to track data entities. Mak-
ing use of these will allow finer control and tracking from within the automated systems inter-
acting with the Integration Toolkit.

The use of namekey provides the programmer with a non-ambiguous method to create and
track entities. This provides a mechanism to retrieve status and states of requests. When using
communication channels to create an entity (such as creating a job), providing a namekey is
optional. If a namekey is not provided, the system will supply a self-generated namekey.

Where needed, the system will create unique namekeys (for example in job segment and his-
tory entries) to allow query functionality.

20964-000 Rev. C Fleet Operation Workspace Core Integration Toolkit
User's Manual

17

Chapter 3: Getting Started

Use the following examples to assist in creating a simple Pickup and Dropoff job request to an
AMR associated with the Fleet Manager in your system.

NOTE: These examples use goal names and namekeys that may not exist in
your application. Use goal names and namekeys appropriate for your system.

3.1 PickupDropoff Job - REST Example
The following JSON object will create a new PickupDropoff job at the goals on the Flow Man-
ager map of p5 and p34. This job will have a pickup priority level of 10 and a dropoff priority
level of 20. TestPickup101 is the namekey of the entity.

The namekey and jobId will be automatically generated because they are not specified in the
JSON command body parameters.

REST Command Details

l Method: POST
l Endpoint: https://[IP]:8443
l Resource: /PickupDropoff

JSON Command Body

To create a PickupDropoff job, issue a POST request https://[IP]:8443/PickupDropoff with the
following JSON object body:

{
"pickupGoal": "p5",
"pickupPriority": 10,
"dropoffGoal": "p34",
"dropoffPriority": 20

}

cURL String

Issue the following cURL string to create a PickupDropoff job:

curl [options] -X POST "https://[IP]:8443/PickupDropoff" -H "accept:
application/json; charset=utf-8" -H "Content-Type: application/json; charset=utf-8"
-d "
{\"pickupGoal\":\"p5\",\"pickupPriority\":10,\"dropoffGoal\":\"p34\",\"dropoffPriorit
y\":20}"

Response Example

{
"code": 201,
"entity": "PickupDropoff",
"id": "7ddabddb-fcbe-4f49-b9a3-2bfd4f8d2e33",
"message": "Entity created"

}

20964-000 Rev. C Fleet Operation Workspace Core Integration Toolkit
User's Manual

19

20 Fleet Operation Workspace Core Integration Toolkit
User's Manual

20964-000 Rev. C

3.2 PickupDropoff SQL Example

3.2 PickupDropoff SQL Example
The following SQL statement will create a new PickupDropoff job at the pre-designated loc-
ations of p5 and p34. This job will have a pickup priority level of 10 and a dropoff priority
level of 20, and a new job identifier of Test1.

SQL Statement

To create a PickupDroppoff job, make the following statement:

INSERT INTO pickup_dropoff_View (pickup_goal, pickup_priority, dropoff_goal,
dropoff_priority, job_id) VALUES ('p5', '10', 'p34', '20', 'Test1');

Response

INSERT 0 1

3.3 RabbitMQ Python Examples
The Python examples below use RabbitMQ to interact with the Integration Toolkit. These
examples can be modified for other functionality by changing the queue names and messages.

IMPORTANT: These examples do not require a security certificate explicitly,
but will use the one obtained from the Integration Toolkit server without an
attempt at validation. The connection is still encrypted and the user id and pass-
word are used for authentication. cert_reqs=ssl.CERT_REQUIRED should be
used when and SSL certificate is present and the programmer wishes to force its
use.

NOTE: Example values must be changed for application-specific conditions, as
noted in the script comments below.

Additional Information: All required libraries and packages must be installed
before these examples can be used.

The examples provided in this document were created using Python 3 and Pika
0.12.0.

Chapter 3: Getting Started

Publish a Message to the inbound.PickupDroppoff Queue

The example below publishes a PickupDroppoff message to the
inbound.PickupDropoff queue.

import os
import ssl
import pika
import logging

logging.basicConfig(level=logging.INFO)

def get_connection(host, username, password, cert_path):
cp = pika.ConnectionParameters(

host=host,
port=5671,
ssl=True,
credentials=pika.PlainCredentials(username, password),
ssl_options=dict(

ssl_version=ssl.PROTOCOL_TLSv1,
ca_certs=cert_path,
cert_reqs=ssl.CERT_OPTIONAL

)
)
return pika.BlockingConnection(cp)

def publish_message_to_queue(conn, inbound_queue, message):
ch = conn.channel()
assert ch.is_open
ch.basic_publish(exchange='', routing_key=inbound_queue, body=message)

#nameless ('') exchange should be used.
print(" [x] published message %r to queue %r" % (message, inbound_queue))

if __name__ == '__main__':
import sys
user = 'toolkitadmin'
password = 'uzJny0tb3FyhteE9BCuQ'

Change password to the generated password.
FMIP = '10.151.26.181'

Change to the Fleet Manager IP

conn = get_connection(
FMIP,
user,
password,
os.path.join(os.path.expanduser("~"), "Desktop\\itk-1-tests\\cert.crt") #

Change the path to the path used in your application.
)
inbound_queue = 'inbound.PickupDropoff'

Change the queue to the desired inbound queue.
message = '{ "pickupGoal": "Goal01", "dropoffGoal": "Goal02" }'

Change this message the the desired input value.
publish_message_to_queue(conn, inbound_queue, message)

20964-000 Rev. C Fleet Operation Workspace Core Integration Toolkit
User's Manual

21

22 Fleet Operation Workspace Core Integration Toolkit
User's Manual

20964-000 Rev. C

3.3 RabbitMQ Python Examples

Consume Messages of the outbound.Job Queue

The example below consumes messages of the outbound.Job queue.

NOTE: Set no_ack =True for acknowledging or no_ack =False to not acknowledge
the consumed messages in subscribe_queue_and_print method.

import os
import ssl
import pika
import logging

logging.basicConfig(level=logging.INFO)

def get_connection(host, username, password, cert_path):
cp = pika.ConnectionParameters(

host=host,
port=5671,
ssl=True,
credentials=pika.PlainCredentials(username, password),
ssl_options=dict(

ssl_version=ssl.PROTOCOL_TLSv1,
ca_certs=cert_path,
cert_reqs=ssl.CERT_OPTIONAL

)
)
return pika.BlockingConnection(cp)

def subscribe_queue_and_print(conn, outbound_queue, no_ack=True):
Set no_ack =False to not acknowledge the consumed messages

ch = conn.channel()
assert ch.is_open
print(ch.basic_get(outbound_queue))
def print_body(ch, method, properties, body):

print(" [x] %r" % body)
ch.basic_consume(print_body, queue=outbound_queue, no_ack=no_ack)
ch.start_consuming()

if __name__ == '__main__':
import sys
user = 'toolkitadmin'
password = 'uzJny0tb3FyhteE9BCuQ'

Change password to the generated password.
FMIP = '10.151.26.181'

Change to the Fleet Manager IP

conn = get_connection(
FMIP,
user,
password,
os.path.join(os.path.expanduser("~"), "Desktop\\itk-1-tests\\cert.crt") #

Change the path to the path used in your application.
)
outbound_queue = 'outbound.Job'

Change the queue to the desired outbound queue.
subscribe_queue_and_print(conn, outbound_queue, True)

Chapter 4: DataStore

DataStore items are data points at the Fleet Manager and each AMR that can be evaluated for
status and other monitoring purposes. They are specific to the Fleet Manager and each AMR.
Each DataStore item describes the data point, i.e. data type, its name, source, etc.

Some examples of DataStore items are:

l Cumulative number of jobs an AMR has completed
l The distance driven by an AMR
l An AMR's current location
l An AMR's current battery state
l Information about the SetNetGo software version

At startup, the Integration Toolkit generates or updates its list of available DataStore items (a
common list is kept for all AMRs). To see a complete list of all DataStoreItem items that are
available on your system, issue a REST call or review the data_store_item_view view. Refer to
DataStore on page 23 and SQL with PostgreSQL on page 12 for more information.

Values for these DataStore items are made available from the Integration Toolkit through a
subscription model (available through all three channels) or with the DataStoreValueLatest
REST command, which ignores subscription state and obtains the latest value from the entity
in question. With the subscription model, a user specifies a subscription interval for a
DataStore item and the Integration Toolkit will obtain DataStore values from the target entity
at the subscription interval specified, and provide access to it via all communication channels.

Both SQL and REST will return the most current DataStore values from the last subscription
period. Streaming interfaces will return entries every time a DataStore value changes. If there
are no changes to the value of a DataStore item, the value will not be updated.

IMPORTANT: Care should be taken to avoid high frequency subscription rates
that are less than 1 second to prevent over-subscription on large numbers of
data entities. Though testing has been done at higher levels, subscription rates
producing 200 or more updated values per second should be avoided.

4.1 Common DataStore Use Cases
Common use cases when working with the DataStore are provided below.

Manually Obtain a List of Possible DataStore Items

This use case is typically executed during the initial programming phase to learn about what
data can be obtained from the system. A programmer should query the data_store_item_view
to get the most current list of DataStore items and details that can be accessed during the auto-
mated run time.

This information can also be obtained with a REST call (/DataStoreItem) but the SQL query
method provides an easier way for a programmer to view this information.

20964-000 Rev. C Fleet Operation Workspace Core Integration Toolkit
User's Manual

23

24 Fleet Operation Workspace Core Integration Toolkit
User's Manual

20964-000 Rev. C

4.2 DataStore Model

Obtain a Single, Current Value for use in the Automated System

This use case is similar to the existing ARCL functionality. With this functionality, the Integ-
ration Toolkit communicates with an AMR or the Fleet Manager and provides the latest data,
ignoring any subscription states.

This can be accomplished with the REST channel using the /DataStoreValueLatest path. Val-
ues obtained this way are published on the RabbitMQ queue and sent to the database in the
same way they would be if the value was subscribed to. This is the most common use-case for
obtaining DataStore values.

Obtain Values with Streaming (http or RabbitMQ)

This use case involves the need for DataStore values to be sent to an application under a set
schedule with any of the stream options, and involves the need to create a subscription in
advance. Refer to Subscribing to DataStore Values on page 27. After the subscription is cre-
ated, the value is automatically updated at the defined subscription interval.

Values that have a subscription can also be obtained with SQL and REST channels, but these
calls will only return the value which was last obtained.

4.2 DataStore Model
The DataStore model consists of the SubscriptionConfig, DataStoreValue, and DataStoreItem
components.

DataStoreItem

DataStoreItem is used to obtain information about the individual items available on the Fleet
Manager or AMR for information retrieval.

SubscriptionConfig

SubscriptionConfig is used to command the Integration Toolkit to obtain values from the
AMRs and the Fleet Manager to make them available for use.

Refer to Subscribing to DataStore Values on page 27 for more information.

DataStoreValue

DataStoreValue provides the latest recorded value of DataStore items. This value is returned
as a String and conversion may be necessary before use. The DataStoreItem entity can be used
to indicate the value type. Refer to Obtaining DataStore Values on page 28 for more inform-
ation.

4.3 Obtaining Information about DataStore Items
The following table describes DataStore item schema.

Chapter 4: DataStore

Table 4-1. DataStore - Data Item Details

Item Details Data Type

namekey Predefined string for the DataStore item's namekey.

The AMR name will be appended for AMR-specific val-
ues, as shown below.

l AMR-specific value - "namekey:AMR name"
l Fleet Manager value - "namekey"

String

itemId DataStore item internal ID (reserved for internal use) Integer

source Fleet Manager - empty

non-Fleet Manager - AMR name

String

category Item category in Fleet Manager.

groupName DataStore group name in Fleet Manager.

groupDescr DataStore description of a group.

itemName DataStore item name.

displayName DataStore display name.

type DataStore item type (string, long, integer, double, or
boolean).

description DataStore item description.

Using REST

Use the following REST calls to obtain information about DataStore items.

Table 4-2. DataStore Item REST Calls

Method Resource Function

GET /DataStoreItem/ByKey/{namekey} Get DataStoreItem by
namekey.

GET /DataStoreItem/UpdatedSince?sinceTime=
{time millis}

Get a list of DataStoreItem
entities that have been
updated since the given time.

GET /DataStoreItem/BySource/{Source} Get a list of DataStoreItem
entities filtered by source.

GET /DataStoreItem/ByItemName/{ItemName} Get a list of DataStoreItem
entities filtered by itemName.

GET /DataStoreItem/ByType/{Type} Get a list of DataStoreItem
entities filtered by type.

GET /DataStoreItem/ByDisplayName/
{DisplayName}

Get a list of DataStoreItem
entities filtered by dis-

20964-000 Rev. C Fleet Operation Workspace Core Integration Toolkit
User's Manual

25

26 Fleet Operation Workspace Core Integration Toolkit
User's Manual

20964-000 Rev. C

4.3 Obtaining Information about DataStore Items

Method Resource Function

playName.

GET /DataStoreItem/ByGroupName/{GroupName} Get a list of DataStoreItem
entities filtered by
groupName.

GET /DataStoreItem/ByCategory/{Category} Get a list of DataStoreItem
entities filtered by category.

DataStore Item JSON Schema

{
"namekey": "string",
"upd": {"millis": long},
"itemId": integer,
"source": "string",
"category": "string",
"groupName": "string",
"groupDescr": "string",
"itemName": "string",
"displayName": "string",
"type": "string",
"description": "string"

}

DataStore Item JSON Example

Response example after GET request https://
[IP]:8443/DataStoreItem/ByItemName/DateAndTime

{
"namekey": "DateAndTime",
"upd": {"millis": "1545173147124"},
"itemId": 3,
"source": "",
"category": "System",
"groupName": "DateAndTime",
"groupDescr": "the human readable time (note that this can leap forwards or
backwards if the time is changed)",
"itemName": "DateAndTime",
"displayName": "DateAndTime",
"type": "string",
"description": "the human readable time (note that this can leap forwards or
backwards if the time is changed)","

}

cURL Command String Example

To get information about the DateAndTime DataStore item:

curl [options] -X GET "https://[IP]:8443/DataStore/ByKey/DateAndTime" -H "accept:
application/json; charset=utf-8"

Using SQL

To obtain information about DataStore items:

SELECT * FROM data_store_item_view;

Chapter 4: DataStore

4.4 Subscribing to DataStore Values
Subscribing to DataStore values is the process of alerting the system that you care about cer-
tain DataStore items.

The following table describes DataStore subscription item schema.

NOTE: The /DataStoreValueLatest REST call does not require a subscription.
Refer to Obtaining DataStore Values on page 28 for more information.

Table 4-3. DataStore Subscription - Data Item Details

Item Details Data Type

namekey Predefined string for the DataStore item's namekey. String

subscriptionInterval Subscription Interval

Units: ms, s, m, h, d

Syntax: "1s", "2m", etc.

Minimum value: 200 ms

Default value: 0 ms

NOTE: A setting of 0 will turn OFF the
subscription.

Using REST

Use the following REST calls to get or set a subscription.

Table 4-4. DataStore Subscription REST Calls

Method Resource Function

GET /SubscriptionConfig/ByKey/{namekey} Get SubscriptionConfig
by namekey.

GET /SubscriptionConfig/UpdatedSince?sinceTime={time
millis}

Get a list of
SubscriptionConfig
entities that have been
updated since the given
time.

GET /SubscriptionConfig/Stream Listen for all
SubscriptionConfig
updates.

PUT /SubscriptionConfig Update Sub-
scriptionConfig.

20964-000 Rev. C Fleet Operation Workspace Core Integration Toolkit
User's Manual

27

28 Fleet Operation Workspace Core Integration Toolkit
User's Manual

20964-000 Rev. C

4.5 Obtaining DataStore Values

NOTE: Integration Toolkit creates an entry for each DataStore item upon star-
tup. The DataStore subscription only updates existing entries and this is why no
POST method is available.

DataStore Subscription JSON Schema

{
"namekey": "string",
"audit": {

"namekey": "string",
"crt": {
"millis": "long"
},
"upd": {
"millis": "long"
},

"ver": integer
},

"subscriptionInterval": "string"
}

DataStore Subscription JSON Example

To subscribe to the ARAM DataStore item's value with 1 second updates with a PUT request
https://[IP]:8443/SubscriptionConfig :

{
"namekey": "ARAM",
"subscriptionInterval": "1s"

}

cURL Command String Example

To subscribe to the ARAM DataStore item with 1 second updates with a POST request:

curl [options] -X PUT "https://[IP]:8443/SubscriptionConfig" -H "accept:
application/json; charset=utf-8" -H "Content-Type: application/json; charset=utf-8"
-d "{\"namekey\":\"ARAM\",\"subscriptionInterval\":\"1s\"}"

Using SQL

Updating a subscription interval using SQL is accomplished by updating the ‘subscription_
interval’ column of the ‘subscription_config_view’ view as shown below.

UPDATE subscription_config_view SET subscription_interval = '1s' WHERE namekey =
'ARAM';

NOTE: This view can also be used to ascertain the current value of these set-
tings.

Using RabbitMQ

outbound.SubscriptionConfig

inbound.SubscriptionConfig

4.5 Obtaining DataStore Values
The following table describes DataStore value item schema.

Chapter 4: DataStore

Table 4-5. DataStore - Value Item Details

Item Details Data Type

namekey Predefined string for the DataStore item's namekey.

The AMR name will be appended for AMR-specific val-
ues, as shown below.

l AMR-specific value - "namekey:AMR name"
l Fleet Manager value - "namekey"

String

value Current value.

Using REST

Use the following REST calls to get DataStore values.

Table 4-6. DataStore Value REST Calls

Method Resource Function

GET /DataStoreValue/ByKey/{namekey} Get DataStoreValue by
namekey.

GET /DataStoreValue/UpdatedSince?sinceTime=
{time millis}

Get a list of DataStoreValue
entities that have been
updated since the given time.

GET /DataStoreValue/Stream Listen for DataStoreValue
updates.

Table 4-7. DataStoreValueLatest Item REST Calls

Method Resource Function

GET /DataStoreValueLatest/{DataStore item
name}

Return (without subscription) a one-
time value for the DataStore item
named.

GET /DataStoreValueLatest/{DataStore item
name}:{AMR name}

Return (without subscription) a one-
time value for the DataStore item
named on the AMR named.

GET /DataStoreValueLatest/{DataStore item
name}:*

Return (without subscription) a one-
time value for the DataStore item
named on all AMRs.

This method will create a 2-second
delay while all values are collected.

20964-000 Rev. C Fleet Operation Workspace Core Integration Toolkit
User's Manual

29

30 Fleet Operation Workspace Core Integration Toolkit
User's Manual

20964-000 Rev. C

4.5 Obtaining DataStore Values

DataStore Value JSON Schema

{
"namekey": "string",
"upd": {
"millis": "long"

},
"value": "string"

}

DataStore Value JSON Example

Response example after GET request https://[IP]:8443/DataStoreValue/ByKey/ARAM

{
"namekey": "ARAM",
"upd": {
"millis": "1553902317602"

},
"value": "5.0.2"

}

cURL Command String Example

To get information about the ARAM DataStore value (subscribed):

curl [options] -X GET "https://[IP]:8443/DataStoreValue/ByKey/ARAM" -H "accept:
application/json; charset=utf-8"

To get information about the ARAM DataStore value (not subscribed, ad hoc):

curl [options] -X GET "https://[IP]:8443/DataStoreValueLatest/ARAM" -H "accept:
application/json; charset=utf-8"

Using SQL

To get information about the ARAM DataStore value:

SELECT * FROM data_store_value_view WHERE namekey='ARAM';

Using RabbitMQ

Queues exist for each DataStore item (outbound.datastore.ARAM, for example). Changes for
all values can be tracked at DataStoreValue. Each DataStoreValue has its own queues.

Using outbound.datastore.X (X is any subscribed DataStoreValue) tracks changes to
DataStoreValue X on the Fleet Manager. This only occurs when X is a valid DataStoreValue
for the Fleet Manager.

Using outbound.datastore.robot.X (X is any subscribed DataStoreValue) tracks changes to
DataStoreValue X on all robots. This only occurs when X is a valid DataStoreValue for an
AMR.

Some examples are provided below.

l outbound.datastore.ARAM

l outbound.datastore.CompletedJobs

l datastore.robot.ARAM

Chapter 4: DataStore

l outbound.datastore.robot.RobotX

l outbound.datastore.robot.RobotY

20964-000 Rev. C Fleet Operation Workspace Core Integration Toolkit
User's Manual

31

Chapter 5: Jobs

The Integration Toolkit supports the following job functions.

l Job creation methods: pickup, pickupdropoff, dropoff, and job request.
l The modification of jobs on the segment level (goal and priority changes).
l The cancellation of entire jobs.
l The cancellation (deletion) of single segments of multi-segment jobs.
l If a job request is created without a namekey or jobId, the Integration Toolkit will auto-
matically generate unique values for these data items.

NOTE: Creating a dropoff job overrides the Fleet Manager's AMR selection
logic. For this reason, use this job type selectively.

NOTE: A job request has the same functionality as the queueMulti
ARCL command. This job type will queue the AMR for multiple pickups and
dropoffs at multiple goals.

Job Creation Steps

Job creation is a two-step process:

1. A job request is made and a confirmation reply is sent after the Integration Toolkit
accepts the request.

NOTE: A confirmation reply is sent with REST only.

2. After the Integration Toolkit accepts the job request, a call is made to the Fleet Manager
to initiate the job. When the job is initiated, job and job segment entries become avail-
able in the Integration Toolkit, allowing the job to be tracked in real time.

5.1 Common Job Creation Use Cases
Common use cases when working with job creation are provided below.

Create a Single Job

This use case involves the creation of a job by specifying only the goal(s). If the system does
not need to track the job or verify status, using any one of the communication channels can
create a job with a single call (or SQL row insertion).

Create a Job and Verify it was Accepted by the Fleet Manager

After a job request is created, the status of it can be obtained by checking the SQL entry or by
running a GET call on the same path's /ByKey URI using the namekey originally returned
with the call.

20964-000 Rev. C Fleet Operation Workspace Core Integration Toolkit
User's Manual

33

34 Fleet Operation Workspace Core Integration Toolkit
User's Manual

20964-000 Rev. C

5.2 Job Creation

Create and Track a Job

This can be accomplished by generating a unique namekey and supplying it in the job cre-
ation step as the JobId. This namekey can then be used to obtain information about the job as
the Fleet Manager processes it (refer to Monitoring of Jobs on page 44 for more information).

Alternatively, a system could create a job without a JobId and then query the job creation
method with the Fleet Manager to obtain the assignedJobId which can then be used to track
the job.

5.2 Job Creation
Information is provided below for the various job creation methods.

Creating Pickup Jobs

This section provides details for generating new Pickup jobs or deleting existing Pickup jobs.
It also describes how to monitor existing Pickup jobs. These functions can be used to manage
Pickup jobs for the AMR fleet.

The following table describes the Pickup item schema.

Table 5-1. Pickup Item Schema

Item Details Data Type

namekey Unique identifier of a Pickup job entity.

Optional for POST/insert/publish method. If omit-
ted, the Integration Toolkit auto-generates.

String

jobId JobId to assign to the job.

Optional for POST/insert/publish method.

goal Name of the pickup goal.

Required with POST/insert/publish method.

priority Priority of the pickup segment.

Optional for POST/insert/publish method. If omit-
ted, Fleet Manager assigns default priority.

Integer

assignedJobId JobId assigned to the job.

If JobId was not provided when the job was cre-
ated, the Fleet Manager automatically creates the
assignedJobId.

String

status "Success" or failure message from the Queuing
Manager.

Pickup Job Using REST

Use the following REST calls to generate and delete existing Pickup jobs. These calls can also
be used to get information for Pickup jobs queued to the Integration Toolkit.

Chapter 5: Jobs

Table 5-2. Pickup Job REST Call Resources

Method Resource Function

POST /Pickup Create Pickup job.

GET /Pickup/UpdatedSince?sinceTime={time millis} Get a list of Pickup job
entities that have been
updated since the given
time.

GET /Pickup/Stream Listen for all Pickup job
updates.

GET /Pickup/ByKey/{namekey} Get Pickup by namekey.

GET /Pickup/ByJobId/{JobId} Get a list of Pickup entit-
ies filtered by JobId.

GET /Pickup/ByStatus/{Status} Get a list of Pickup entit-
ies filtered by Status.

GET /Pickup/ByAssignedJobId/{AssignedJobId} Get a list of Pickup entit-
ies filtered by
AssignedJobId.

DELETE /Pickup/{namekey} Delete Pickup by
namekey (see note
below).

NOTE: The DELETE method is only required if a namekey needs to be reused.

Pickup Job JSON Schema

{
"namekey": "string",
"audit": {

"namekey": "string",
"crt": {

"millis": "long"
},

"upd": {
"millis": "long"
},

"ver": integer
},

"goal": "string",
"priority": integer,
"jobId": "string",
"status": "string",
"assignedJobId": "string"

}

Pickup Job JSON Example

To create a pickup job with a POST request https://[IP]:8443/Pickup :

20964-000 Rev. C Fleet Operation Workspace Core Integration Toolkit
User's Manual

35

36 Fleet Operation Workspace Core Integration Toolkit
User's Manual

20964-000 Rev. C

5.2 Job Creation

{
"namekey": "PickupJob1",
"goal": "Goal1",
"priority": 10,
"jobId": "TestJob1"

}

cURL Command String Example

To create a pickup job with a POST request:

curl [options] -X POST "https://[IP]:8443/Pickup" -H "accept: application/json;
charset=utf-8" -H "Content-Type: application/json; charset=utf-8" -d "
{\"namekey\":\"PickupJob1\",\"goal\":\"Goal1\",\"priority\":10,\"jobId\":\"TestJob
1\"}"

Pickup Job Using SQL

To create a pickup job:

INSERT INTO pickup_view (namekey, goal, priority, job_id) VALUES (
'PickupJob1','Goal1', 10, 'TestJob1');

Pickup Job Using RabbitMQ

inbound.Pickup

outbound.Pickup

Creating PickupDropoff Jobs

This section provides details for generating new PickupDropoff jobs or deleting existing
PickupDropoff jobs. It also describes how to monitor existing PickupDropoff jobs. These func-
tions can be used to manage PickupDropoff jobs for the AMR fleet.

The following table describes the PickupDropoff item schema.

Table 5-3. PickupDropoff Item Schema

Item Details Data Type

namekey Unique identifier of a PickupDropoff job entity.

Optional for POST/insert/publish method. If omit-
ted, the Integration Toolkit auto-generates.

String

jobId JobId to assign to the job.

Optional for POST/insert/publish method.

pickupGoal Name of the pickup goal.

Required with POST/insert/publish method.

pickupPriority Priority of the pickup segment.

Optional for POST/insert/publish method. If omit-
ted, Fleet Manager assigns default priority.

Integer

dropoffGoal Name of the dropoff goal.

Required with the POST/insert/publish method.

String

Chapter 5: Jobs

Item Details Data Type

dropoffPriority Priority of the dropoff segment.

Optional for POST/insert/publish method. If omit-
ted, Fleet Manager assigns default priority.

Integer

assignedJobId JobId assigned to the job.

If JobId was not provided when the job was cre-
ated, the Fleet Manager automatically creates the
assignedJobId.

String

status "Success" or failure message from the Queuing
Manager.

String

PickupDropoff Job Using REST

Use the following REST calls to generate and delete existing PickupDropoff jobs. These calls
can also be used to get information for PickupDropoff jobs queued to the Integration Toolkit.

Table 5-4. PickupDropoff Job REST Call Resources

Method Resource Function

POST /PickupDropoff Create PickupDropoff.

GET /PickupDropoff/UpdatedSince?sinceTime=
{time millis}

Get a list of PickupDropoff
entities that have been
updated since the given time.

GET /PickupDropoff/Stream Listen for all PickupDropoff job
updates.

GET /PickupDropoff/ByKey/{namekey} Get PickupDropoff by
namekey.

GET /PickupDropoff/ByJobId/{JobId} Get a list of PickupDropoff
entities filtered by JobId.

GET /PickupDropoff/ByStatus/{Status} Get a list of PickupDropoff
entities filtered by Status.

GET /PickupDropoff/ByAssignedJobId/
{AssignedJobId}

Get a list of PickupDropoff
entities filtered by
AssignedJobId.

DELETE /PickupDropoff/{namekey} Delete PickupDropoff by
namekey.

20964-000 Rev. C Fleet Operation Workspace Core Integration Toolkit
User's Manual

37

38 Fleet Operation Workspace Core Integration Toolkit
User's Manual

20964-000 Rev. C

5.2 Job Creation

PickupDropoff Job JSON Schema

{
"namekey": "string",
"pickupGoal": "string",
"pickupPriority": integer,
"dropoffGoal": "string",
"dropoffPriority": integer,
"jobId": "string",
"status": "string",
"assignedJobId": "string"

}

PickupDropoff Job JSON Example

To create aPickupDropoff job with a POST request https://[IP]:8443/PickupDropoff :

{
"namekey":"PickupDropoff1",
"pickupGoal": "Goal1",
"pickupPriority": 10,
"dropoffGoal": "Goal2",
"dropoffPriority": 20,
"jobId": "TestJob1"

}

cURL Command String Example

To create a PickupDropoff job with a POST request:

curl [options] -X POST "https://[IP]:8443/PickupDropoff" -H "accept:
application/json; charset=utf-8" -H "Content-Type: application/json; charset=utf-8"
-d "
{\"namekey\":\"PickupDropoff1\",\"pickupGoal\":\"Goal1\",\"pickupPriority\":10,\"dro
poffGoal\":\"Goal2\",\"dropoffPriority\":20,\"jobId\":\"TestJob1\"}"

PickupDropoff Job Using SQL

To create a PickupDropoff job:

INSERT INTO pickup_dropoff_view (namekey, pickup_goal, pickup_priority,
dropoff_goal,dropoff_priority, job_id) VALUES ('PickupDropoff1','Goal1', 10,
'Goal2', 20, 'TestJob1');

PickupDropoff Job Using RabbitMQ

inbound.PickupDropoff

outbound.PickupDropoff

Creating Dropoff Jobs

This section provides details for generating new Dropoff jobs or deleting existing Dropoff
jobs. It also describes how to monitor existing Dropoff jobs. These functions can be used to
manage Dropoff jobs for the AMR fleet.

The following table describes the Dropoff item schema.

NOTE: Dropoff jobs represent a way to circumvent the Queue Management
functionality of the Fleet Manager and should be avoided where possible. This
feature may be deprecated in future versions.

Chapter 5: Jobs

Table 5-5. Dropoff Item Schema

Item Details Data Type

namekey Unique identifier of a Dropoff job entity.

Optional for POST/insert/publish method. If omit-
ted, the Integration Toolkit auto-generates.

String

jobId JobId to assign to the job.

Optional for POST/insert/publish method.

priority Priority of the dropoff segment.

Optional for POST/insert/publish method. If omit-
ted, Fleet Manager assigns default priority.

Integer

robot AMR for this Dropoff job request. String

goal Name of the dropoff goal.

Required with the POST/insert/publish method.

assignedJobId JobId assigned to the job.

If JobId was not provided when the job was cre-
ated, the Fleet Manager automatically creates the
assignedJobId.

status "Success" or failure message from the Queuing
Manager.

Dropoff Job Using REST

Use the following REST calls to generate and delete existing Dropoff jobs. These calls can also
be used to get information for Dropoff jobs queued to the Integration Toolkit.

Table 5-6. Dropoff Job REST Call Resources

Method Resource Function

POST /Dropoff Create Dropoff job.

GET /Dropoff/UpdatedSince?sinceTime={time millis} Get a list of Dropoff entit-
ies that have been
updated since the given
time.

GET /Dropoff/Stream Listen for all Dropoff job
updates.

GET /Dropoff/ByKey/{namekey} Get Dropoff by namekey.

GET /Dropoff/ByJobId/{JobId} Get a list of Dropoff entit-
ies filtered by JobId.

GET /Dropoff/ByStatus/{Status} Get a list of Dropoff entit-
ies filtered by status.

20964-000 Rev. C Fleet Operation Workspace Core Integration Toolkit
User's Manual

39

40 Fleet Operation Workspace Core Integration Toolkit
User's Manual

20964-000 Rev. C

5.2 Job Creation

Method Resource Function

GET /Dropoff/ByAssignedJobId/{AssignedJobId} Get a list of Dropoff entit-
ies filtered by Assigned
JobId.

GET /Dropoff /ByRobot/{AMR} Get a list of Dropoff entit-
ies filtered by AMR.

Dropoff Job JSON Schema

{
"namekey": "string",
"robot": "string",
"goal": "string",
"priority": integer,
"jobId": "string",
"status": "string",
"assignedJobId": "string"

}

Dropoff Job JSON Example

To create a dropoff job using a POST request https://[IP]:8443/Dropoff :

{
"namekey": "Dropoff1",
"robot": "Robot6",
"goal": "Goal1",
"priority": 10,
"jobId": "TestJob1"

}

cURL Command String Example

To create a dropoff job using the POST method:

curl [options] -X POST "https://[IP]:8443/Dropoff" -H "accept: application/json;
charset=utf-8" -H "Content-Type: application/json; charset=utf-8" -d "
{\"namekey\":\"Dropoff1\",\"robot\":\"Robot6\",\"goal\":\"Goal1\",\"priority\":10,\
"jobId\":\"TestJob1\"}"

Dropoff Job Using SQL
INSERT INTO dropoff_view (namekey, robot, goal, priority, job_id) VALUES
('Dropoff1', 'Robot1', 'Goal1', 10, 'TestJob1');

Dropoff Job Using RabbitMQ

inbound.Dropoff

outbound.Dropoff

Creating Job Request Job Types (Multi-segment)

Job Requests are jobs with a variable number of segments (like queueMulti from ARCL).

This section provides details about the following Job Request functions. These functions can
be used to manage Job Requests for the AMR fleet.

Chapter 5: Jobs

l Queue an AMR for multiple Pickups and Dropoffs at multiple goals with a new Job
Request.

l Monitor existing Job Requests.
l Delete existing Job Requests.

The following table describes the Job Request item schema.

Table 5-7. Job Request Item Schema

Item Details Data Type

namekey Unique identifier of a Job request entity.

Optional for POST/insert/publish method. If omit-
ted, the Integration Toolkit auto-generates.

Required for SQL INSERT statements.

String

jobId JobId to assign to the job.

Optional for POST/insert/publish method.

defaultPriority Default priority selection.

Required for POST/insert/publish method.

When set to true, this will override any priorities
set in this job request.

Bool

goal

(enumerated item)

See note below

The goal name for the job segment.

Refer to Job Request JSON Schema below.

Required for POST/insert/publish method.

String

priority Priority of the pickup segment.

Optional for POST method. If omitted, Fleet Man-
ager assigns default priority.

Integer

segmentType

(enumerated item)

See note below

Must be replaced with job segment type with
either "pickupGoal" or "dropoffGoal".

Refer to Job Request JSON example below.

Required for POST/insert/publish method.

String

assignedJobId JobId assigned to the job.

If JobId was not provided when the job was cre-
ated, the Fleet Manager automatically creates the
assignedJobId.

status "Success" or failure message from the Queuing
Manager.

NOTE: The goal and segmentType items in every job request's details are
presented in one type-value pair instead of two separate entries. If the segment
type is pickup, segmentType and goal are presented as "pickupGoal":"goal name".
If the segment type is dropoff, segmentType and goal are presented as
"dropoffGoal":"goal name". Refer to the JSON example below for correct syntax.

20964-000 Rev. C Fleet Operation Workspace Core Integration Toolkit
User's Manual

41

42 Fleet Operation Workspace Core Integration Toolkit
User's Manual

20964-000 Rev. C

5.2 Job Creation

Job Request Using REST

Use the following REST calls to generate and delete existing Job Requests. These calls can also
be used to get information for Job Requests queued to the Integration Toolkit.

NOTE: To obtain job details such as goal, priority, and segment type, use the
JobRequestDetails resources listed in Table 5-9.

Table 5-8. Job Request REST Call Resources

Method Resource Function

POST /JobRequest Create Job Request.

GET /JobRequest/UpdatedSince?sinceTime={time
millis}

Get a list of Job Request entit-
ies that have been updated
since the given time.

GET /JobRequest/Stream Listen for all Job Request
updates.

GET /JobRequest/ByKey/{namekey} Get Job Request by namekey.

GET /JobRequest/ByJobId/{JobId} Get a list of Job Request entit-
ies filtered by JobId.

GET /JobRequest/ByStatus/{Status} Get a list of Job Request entit-
ies filtered by Status.

GET /JobRequest/ByAssignedJobId/{AssignedJobId} Get a list of Job Request entit-
ies filtered by AssignedJobId.

DELETE /JobRequest/{namekey} Delete Job Request by
namekey.

Table 5-9. Job Request Detail REST Call Resources

Method Resource Function

GET /JobRequestDetail/ByKey/{namekey} Get JobRequestDetail by
namekey

GET /JobRequestDetail/UpdatedSince?sinceTime=
{time millis}

Get a list of JobRequestDetail
entities that have been
updated since the given time

GET /JobRequestDetail/ByJobRequest/{JobRequest
namekey}

Get a list of JobRequestDetail
filtered by JobRequest

Chapter 5: Jobs

Job Request JSON Schema

{
"namekey": "string",
"audit": {

"namekey": "string",
"crt": {

"millis": "long"
},
"upd": {

"millis": "long"
},
"ver": integer

},
"jobId": "string",
"defaultPriority": true,
"details": [

{
"segmentType": "string",
"priority": integer,
}

],
"status": "string",
"assignedJobId": "string"

}

Job Request JSON Example

To create a job request using a POST request https://[IP]:8443/JobRequest :

{
"namekey": "JobRequest1",
"jobId": "TestJob1",
"defaultPriority": false,
"details": [

{
"pickupGoal": "Goal1",
"priority": 10
},
{
"dropoffGoal": "Goal2",
"priority": 20
}

]
}

cURL Command String Example

To create a job request using a POST request:

curl [options] -X POST "https://[IP]:8443/JobRequest" -H "accept: application/json;
charset=utf-8" -H "Content-Type: application/json; charset=utf-8" -d "
{\"namekey\":\"JobRequest1\",\"jobId\":\"TestJob1\",\"defaultPriority\":false,\"deta
ils\":[{\"pickupGoal\":\"Goal1\",\"priority\":10},
{\"dropoffGoal\":\"Goal2\",\"priority\":20}]}"

20964-000 Rev. C Fleet Operation Workspace Core Integration Toolkit
User's Manual

43

44 Fleet Operation Workspace Core Integration Toolkit
User's Manual

20964-000 Rev. C

5.3 Monitoring of Jobs

Job Request Using SQL

Job requests involve inserting into both the job_request_view and job_request_detail_view. To
accomplish this you will need add the segments associated with the job in the job_request_
detail_view after creating the job itself in the job_request_view. These database insertions
need to be created in the same transaction.

To create a job request using the POST method:

BEGIN; WITH new_jobRequest AS (INSERT INTO job_request_view(job_id, default_priority,
namekey) VALUES ('JobID1', true,uuid_generate_v1()) RETURNING namekey)

INSERT INTO job_request_detail_view (job_request,idx, goal, priority, segment_type,
namekey) VALUES ((SELECT namekey FROM new_jobRequest),'1','Goal1',10,'Pickup',(SELECT
namekey FROM new_jobRequest) || ' 1'), ((SELECT namekey FROM new_
jobRequest),'1','Goal2',20,'Dropoff',(SELECT namekey FROM new_jobRequest) || '2');

COMMIT;

Job Request Using RabbitMQ

inbound.JobRequest

outbound.JobRequest

5.3 Monitoring of Jobs
The monitoring of jobs can be accomplished with any communication channel. Live updates
can be obtained from the REST stream endpoints or from the RabbitMQ channel. On demand
data can be obtained with non-stream REST calls and from the database.

When monitoring jobs, keep in mind the two-step nature of job creation (refer to Job Creation
Steps on page 33). If job creation fails (for instance when a specified goal doesn’t exist on the
map), no job will be created and the failure will be reported on the status field of the job cre-
ation record without making any job or job_segment record. Given this functionality, a pro-
grammer may find it beneficial to check the status of a created job prior to working with the
job table, REST path, or RabbitMQ queue to monitor its progress.

Job Monitoring Schema Entities

Job monitoring schema consists of the following entities:

l Job - get the status of queued jobs.
l Job Segment - get the status of queued job segments.
l Job History - get the history of jobs.
l Job Segment History - get the history of job segments.

Job Monitoring Details

This section provides details for monitoring all existing jobs.

The following table describes the Job Monitoring item schema.

Chapter 5: Jobs

Table 5-10. Job Monitoring Item Schema

Item Details Data Type

namekey Unique identifier of a job entity. String

jobId Assigned jobId by the Fleet Manager.

queuedTimestamp Time when the job was queued. Integer

jobType Job type of Pickup (P), Dropoff (D),
PickupDropoff (PD), or Multi-goal (M).

String

lastAssignedRobot Name of the AMR last assigned to this job.

cancelReason Reason why the job was cancelled.

Provided by Fleet Manager only when sup-
plied by the client during job cancellation.

status Job status of Pending, InProgress, Com-
pleted, Cancelled, Cancelling, or Modifying.

completedTimestamp Time when the job was completed. Integer

linkedJob Reserved for future use (empty). String

failCount Number of times the job has failed.

Only present if the job has failed.

Integer

Job Monitoring Using REST

Use the following REST calls to monitor an existing job.

Table 5-11. Job Monitoring REST Call Resources

Method Resource Function

GET /Job/ByKey/{namekey} Get job by namekey.

GET /Job/UpdatedSince?sinceTime={time
millis}

Get a list of job entities that have
been updated since the given time.

GET /Job/Stream Listen for all Job updates.

GET /Job/History?sinceTime={time millis} Get a list of Job history entities
since the given time.

GET /Job/History?sinceTime={time
millis}&namekey={namekey}

Get a list of Job history entities for a
specific namekey since the given
time.

GET /Job/ByJobId/{JobId} Get a list of Job entities filtered by
JobId.

GET /Job/ByLastAssignedRobot/
{LastAssignedRobot}

Get a list of Job entities filtered by
lastAssignedRobot.

GET /Job/ByStatus/{Status} Get a list of Job entities filtered by

20964-000 Rev. C Fleet Operation Workspace Core Integration Toolkit
User's Manual

45

46 Fleet Operation Workspace Core Integration Toolkit
User's Manual

20964-000 Rev. C

5.3 Monitoring of Jobs

Method Resource Function

status.

Job Monitoring JSON Schema

{
"namekey": "string",
"upd": {
"millis": "long"

},
"jobId": "string",
"jobType": "P, D, PD, M",
"queuedTimestamp": {
"millis": "long"

},
"completedTimestamp": {
"millis": "long"

},
"status": "Pending, InProgress, Completed, Cancelled, Cancelling,
Modifying",
"linkedJob": "string",
"failCount": integer,
"lastAssignedRobot": "string",
"cancelReason": "string"

}

Job Monitoring JSON Example

Response example after GET request https://[IP]:8443/Job/ByStatus/Completed :

{
"namekey": "JOB700-5c9eadd6",
"upd": {
"millis": "1553903125825"

},
"jobId": "JOB700",
"jobType": "M",
"queuedTimestamp": {
"millis": "1553903062000"

},
"completedTimestamp": {
"millis": "1553903105000"

},
"status": "Completed",
"lastAssignedRobot": "Robot154"

}

cURL Command String Example

To get information about completed jobs using the GET method:

curl [options] -X GET "https://[IP]:8443/Job/ByStatus/Completed" -H "accept:
application/json; charset=utf-8"

Chapter 5: Jobs

Job Monitoring Using SQL

To get information about completed jobs:

SELECT * FROM job_view WHERE status = 'Completed';

Job Monitoring Using RabbitMQ

outbound.Pickup

outbound.Dropoff

outbound.PickupDropoff

outbound.JobRequest

outbound.Job

Additional Information: outbound.Pickup/Dropoff/PickupDropoff/JobRequest
provide updates on these request entities. outbound.Job provides updates on
jobs sent from the Integration Toolkit to the Fleet Manager.

Job Segment Monitoring Details

The section below provides details for monitoring Job Segments.

The following table describes the Job Segment Monitoring item schema.

Table 5-12. Job Segment Item Schema

Item Details Data Type

namekey Unique identifier of a Job Segment entity. String

segmentId Job segmentId.

segmentType Job Segment type of Pickup or Dropoff.

seq Job Segment sequence number. Integer

status Job Segment status of Pending, InProgress, Inter-
rupted, Completed, Cancelled, Cancelling, Failed,
Modifying, or Modified.

String

subStatus Job Segment sub-status of Unallocated, Allocated,
BeforePickup, BeforeDropOff, BeforeEvery,
Before, Driving, After, AfterEvery, AfterPickup,
AfterDropOff, Buffering, Buffered, None, Con-
tainsCancelReason, ContainsLinkedReason,
AssignedRobotOffline, NoMatch-
ingRobotForLinkedJob, NoMatch-
ingRobotForOtherSegment, or NoMatchingRobot.

job NameKey of the associated job.

robot Job Segment assigned AMR name.

20964-000 Rev. C Fleet Operation Workspace Core Integration Toolkit
User's Manual

47

48 Fleet Operation Workspace Core Integration Toolkit
User's Manual

20964-000 Rev. C

5.3 Monitoring of Jobs

Item Details Data Type

linkedJobSegment Job segmentId of the previous job segmentId (if
applicable).

The value of this item is null for the first segment
of the job.

priority Job Segment priority. Integer

goalName Job segment goal name. String

cancelReason Reason why the Job Segment was cancelled.

Provided by Fleet Manager only when supplied by
the client during job cancellation.

Job Segment Monitoring Using REST

Use the following REST calls to monitor an existing job segment.

Table 5-13. Job Segement Monitoring REST Call Resources

Method Resource Function

GET /JobSegment/ByKey/{namekey} Get Job Segment by namekey.

GET /JobSegment/UpdatedSince?sinceTime={time
millis}

Get a list of Job Segment entit-
ies that have been updated
since the given time.

GET /JobSegment/Stream Listen for all Job Segment
updates.

GET /JobSegment/History?sinceTime={time millis} Get a list of Job Segment his-
tory entities that have been
updated since the given time.

GET /JobSegment/History?sinceTime={time
millis}&namekey={namekey}

Get a list of Job Segment his-
tory entities for a specific
namekey that have been
updated since the given time.

GET /JobSegment/ByStatus/{Status} Get a list of Job Segment entit-
ies filtered by status.

GET /JobSegment/ByJob/{Job} Get a list of Job Segment entit-
ies filtered by job.

GET /JobSegment/ByRobot/{AMR} Get a list of Job Segment entit-
ies filtered by AMR.

GET /JobSegment/ByGoalName/{GoalName} Get a list of Job Segment entit-
ies filtered by goalName.

Chapter 5: Jobs

Job Segment Monitoring JSON Schema

{
"namekey": "string",
"upd": {

"millis": "long"
},

"seq": integer,
"segmentId": "string",
"segmentType": "Pickup, DropOff",
"status": "Pending, InProgress, Interrupted, Completed, Cancelled,
Cancelling, Failed, Modifying, Modified, InterruptedByModify",
"subStatus": "Unallocated, Allocated, BeforePickup, BeforeDropOff,
BeforeEvery, Before, Driving, After, AfterEvery, AfterPickup, AfterDropOff,
Buffering, Buffered, None, ContainsCancelReason, ContainsLinkedReason,
AssignedRobotOffline, NoMatchingRobotForLinkedJob,
NoMatchingRobotForOtherSegment, NoMatchingRobot",
"job": "string",
"robot": "string",
"linkedJobSegment": "string",
"goalName": "string",
"priority": integer,
"completedTimestamp": {

"millis": "long"
},

"cancelReason": "string"
}

Job Segment Monitoring JSON Example

Response example after GET request https://[IP]:8443/JobSegment/ByStatus/Completed :

{
"namekey": "JobMultiBasic-REST-5c9eacdc-PICKUP688",
"upd": {
"millis": "1553902841229"

},
"segmentId": "PICKUP688",
"segmentType": "Pickup",
"status": "Completed",
"subStatus": "None",
"robot": "Robot154",
"job": "JobMultiBasic-REST-5c9eacdc",
"goalName": "GoalN1",
"priority": 10,
"completedTimestamp": {
"millis": "1553902821000"

},
"seq": 1

}

cURL Command String Example

To get information about completed Job Segments using the GET method:

curl [options] -X GET "https://[IP]:8443/JobSegment/ByStatus/Completed" -H "accept:
application/json; charset=utf-8"

20964-000 Rev. C Fleet Operation Workspace Core Integration Toolkit
User's Manual

49

50 Fleet Operation Workspace Core Integration Toolkit
User's Manual

20964-000 Rev. C

5.4 Job Segment Modification

Job Segment Monitoring Using SQL

To get information about completed Job Segments:

SELECT * FROM job_segment_view WHERE status = 'Completed';

Job Segment Monitoring Using RabbitMQ

outbound.JobSegment

5.4 Job Segment Modification
Jobs that have not yet completed can be modified by having a segment’s goal and/or its pri-
ority changed. These modifications can occur at any point prior to a segment completing.

A priority change will not be recorded if the segment has already begun as the priority has
already been used to schedule the segment.

NOTE: If a Job segment modification request is issued after the job has com-
pleted, it will be recorded but it will not affect the Job.

Job Segment Modification Details

This section provides details about how to modify existing Job Segments. It also describes
how to monitor and delete a modified Job Segment.

The following table describes the Job Segment Modification item schema.

Table 5-14. Jog Segment Modification Item Schema

Item Description Data Type

namekey Unique identifier of a JobSegmentModify request
entity.

Optional for POST/insert/publish method. If omit-
ted, the Integration Toolkit auto-generates.

String

segment namekey Unique identifier of a Job Segment being modified.

This or segmentId required for POST/in-
sert/publish method.

segmentId Modify pending or in progress jobs based on the
segment namekey.

This or segment namekey required for
POST/insert/publish method.

goal Name of the goal for the modified Job Segment.

Optional for POST/insert/publish method.

priority Priority of the modified Job Segment.

Optional for POST/insert/publish method.

Integer

status "Success" or failure message from the Queuing

Chapter 5: Jobs

Item Description Data Type

Manager.

Job Segment Modification Using REST

Use the following REST calls to modify and delete existing Job Segments. These calls can also
be used to get information for modified Job Segments queued to the Integration Toolkit.

Table 5-15. Job Segment REST Call Resources

Method Resource Function

GET /JobSegmentModify/ByKey/{namekey} Get modified Job Segments
by namekey.

DELETE /JobSegmentModify/{namekey} Delete modified Job Seg-
ments by namekey.

GET /JobSegmentModify/UpdatedSince?sinceTime=
{time millis}

Get a list of modified Job
Segment entities updated
since the given time.

POST /JobSegmentModify Create a modified Job Seg-
ment.

GET /JobSegmentModify/BySegmentId/{SegmentID} Get a list of modified Job
Segment entities filtered by
SebmentId.

Job Segment Modification JSON Schema

{
"namekey": "string",
"audit": {

"namekey": "string",
"crt": {

"millis": "long"
},
"upd": {

"millis": "long"
},
"ver": integer

},
"segmentId": "string",
"segmentNamekey": "string",
"priority": integer,
"goal": "string",
"status": "string"

}

Job Segment Modification JSON Example

To modify a Job Segment with a POST request https://[IP]:8443/JobSegmentModify :

20964-000 Rev. C Fleet Operation Workspace Core Integration Toolkit
User's Manual

51

52 Fleet Operation Workspace Core Integration Toolkit
User's Manual

20964-000 Rev. C

5.5 Job and Job Segment Cancellation

{
"segmentId": "DROPOFF6",
"priority": 10,
"goal": "L6_2"

}

cURL Command String Example

To modify a Job Segment with a POST request:

curl [options] -X POST "https://[IP]:8443/JobSegmentModify" -H "accept:
application/json; charset=utf-8" -H "Content-Type: application/json; charset=utf-8"
-d "{\"segmentId\":\"DROPOFF6\",\"priority\":10,\"goal\":\"L6_2\"}"

Job Segment Modification Using SQL
INSERT INTO job_segment_modify_view (goal, priority, segment_id) VALUES ('L6_2', 10,
'DROPOFF6');

Job Segment Modification Using RabbitMQ

inbound.JobSegmentModify

outbound.JobSegmentModify

5.5 Job and Job Segment Cancellation
Job and Job segment cancellations are achieved by providing a method and associated value
to identify the Job to be cancelled.

Job and Job Segment Cancellation Details

This section provides details for cancelling Jobs and Job segments. Existing Job cancellations
can be monitored and deleted.

The following table describes the Job and Job segment cancellation item schema.

Table 5-16. Job and Job Segment Cancellation Schema

Item Details Data Type

namekey Unique identifier for a Job cancel request
entity.

Optional for POST/insert/publish method.
If omitted, the Integration Toolkit auto-
generates.

String

cancelType

(enumerated item)

Must be replaced with cancellation
method from below.

Refer to Job Request JSON Example
below.

Required for
POST/insert/publish method.

cancelValue Must be replaced with a value for the
chosen cancelType.

Chapter 5: Jobs

Item Details Data Type

(enumerated item) Provides the value for the "cancelType"
method chosen.

cancelReason Reason Job or Job Segment was
cancelled.

Optional for POST/insert/publish method.

status "Success" or failure message from the
Queuing Manager.

A cancellation method must be specified for the cancelType item. The following cancelType
methods are supported.

Table 5-17. Job and Job Segment Cancellation Method Descriptions

cancelType Method Description

jobId Cancel pending or in progress job based on the JobId.

jobNamekey Cancel pending or in progress job based on the Job’s namekey.

segmentId Cancel pending or in progress job based on the segmentId.

segmentNamekey Cancel pending or in progress job based on the Segment
namekey.

jobStatus Cancel all jobs with the given status.

robot Cancel all jobs assigned to a given AMR.

removeSegmentId Cancel a job segment using the SegmentId.

removeSegmentNamekey Cancel a job segment using the segment namekey.

Job and Job Segment Cancellation Functions Using REST

Use the following REST calls to cancel Jobs and Job segments, and monitor existing Job can-
cellations.

Table 5-18. Job and Job Segment Cancellation REST Call Resources

Method Resource Function

GET /JobCancel/ByKey/{namekey} Get Job cancel request
by the job cancel request
namekey.

DELETE /JobCancel/{namekey} Delete cancel Job or Job
Segmentcancel request,
by namekey.

GET /JobCancel/UpdatedSince?sinceTime={time millis} Get a list of cancelled Job
entities that have been
updated since the given
time.

20964-000 Rev. C Fleet Operation Workspace Core Integration Toolkit
User's Manual

53

54 Fleet Operation Workspace Core Integration Toolkit
User's Manual

20964-000 Rev. C

5.1 WaitTaskCancel

Method Resource Function

POST /JobCancel Create a cancel Job.

Job and Job Segment Cancellation JSON Schema

{
"namekey": "string",
"cancelType": "string",
"cancelValue": "string",
"cancelReason": "string",
"status": "string"

}

Job and Job Segment Cancellation JSON Example

To cancel a job with a POST request https://[IP]:8443/JobCancel :

{
"namekey": "cancelJob1",
"jobId": "TestJob1",
"cancelReason": "Job needed to be cancelled"

}

cURL Command String Example

To cancel a job with a POST request:

curl [options] -X POST "https://[IP]:8443/JobCancel" -H "accept:
application/json; charset=utf-8" -H "Content-Type: application/json; charset=utf-
8" -d "{\"namekey\":\"cancelJob1\",\"jobId\":\"TestJob1\",\"cancelReason\":\"Job
needed to be cancelled\"}"

Job Cancellation Using SQL

To cancel a job:

INSERT INTO job_cancel_view (namekey, cancel_type, cancel_value, cancel_reason)
VALUES ('cancelJob1', 'JobId', 'TestJob1', 'Job needed to be cancelled');

Job Cancellation Using RabbitMQ

inbound.JobCancel

outbound.JobCancel

5.1 WaitTaskCancel
The Integration Toolkit version with FLOW 2.0 and above will include one additional feature.
It adds the ability, through REST only, to cancel a wait state and also to check on the status of
the wait state.

Version Information: This feature is available as of FLOW 2.0 Integration
Toolkit version 1.1.0.

Chapter 5: Jobs

Table 5-19. WaitTask Cancellation REST Call Resources

Method Resource Function

POST /WaitTaskCancel Cancels a wait state.

GET /WaitTaskState/{robot} Obtains waiting status on
a robot.

cURL examples

Following are POST and GET cURL examples for robot Robot1:

POST
curl [options] -X POST "https://[IP]:8443/WaitTaskCancel" -H
"accept: application/json; charset=utf-8"
-H "Content-Type: application/json; charset=utf-8" -d "{\"robot\":\"Robot1\"}"

GET
curl [options] -X GET "https://[IP]:8443/WaitTaskState/Robot1" -H "accept: applic-
ation/json; charset=utf-8"

Responses

Both REST calls return a code reflecting the waiting state of the robot per the following table:

Code Description Note

Positive value "waiting for <s> seconds"

0 "wait done" Unlikely return value as state is transient

-1 "wait forever"

-2 "wait task interrupted" Unlikely return value as state is transient

-3 "wait stopped by user" Unlikely return value as state is transient

-4 "wait interrupted by this client"

-5 "not waiting now"

20964-000 Rev. C Fleet Operation Workspace Core Integration Toolkit
User's Manual

55

Chapter 6: AMR Data and Faults

AMR data and fault information can be monitored with the Integration Toolkit. Details are
provided in the sections below.

6.1 AMR Data
This section provides details about how AMR data can be monitored using the Integration
Toolkit.

AMR String Monitoring Details

This section provides details about monitoring strings sent from the AMR using the SendText
task.

Additional Information: Custom strings can be generated from the
AMR using ARCL commands. Refer to the Advanced Robotics Command Language
Enterprise Manager Integration Guide (Cat. No. I618) for more information.

The following table describes the AMR String Monitoring item schema.

Table 6-1. AMR String Monitoring Item Schema

Item Description Data Type

namekey Unique identifier of the string object. String

taskKey Optional string to identify the task type.

message String sent from the AMR.

source AMR that sent the string.

AMR String Monitoring Using REST

Use the following REST calls to monitor strings sent from the AMR.

Table 6-2. AMR String Monitoring REST Call Resources

Method Resource Function

GET /SendText/BySource/{Source} Get a list of SendText
entities filtered by
Source.

GET /SendText/ByTaskKey/{TaskKey} Get a list of SendText
entities filtered by
TaskKey.

DELETE /SendText/{id} Delete SendText by ID.

20964-000 Rev. C Fleet Operation Workspace Core Integration Toolkit
User's Manual

57

58 Fleet Operation Workspace Core Integration Toolkit
User's Manual

20964-000 Rev. C

6.1 AMR Data

Method Resource Function

GET /SendText/UpdatedSince?sinceTime={time millis} Get a list of SendText
entity updates since the
given time. A default
value of 0 can be used to
get all SendText strings.

GET /SendText/ByKey/{id} Get SendText by
namekey.

AMR String Monitoring JSON Schema
{

"namekey": "string",
"upd": {

"millis": "long"
},

"taskKey": "string",
"message": "string",
"source": "string"

}

AMR String Monitoring JSON Example

Response example after GET request https://[IP]:8443/SendText/ByKey/57d470e6-5a0e-4f68-
a7f4-dec170aee0d3 :

{
"namekey": "57d470e6-5a0e-4f68-a7f4-dec170aee0d3",
"upd": {

"millis": "1643658651465"
},

"taskKey": "",
"message": "\"Robot has reached Goal!\"",
"source": "Sim7"

}

cURL Command String Example

To get strings sent from the AMR using the GET method:

curl -X GET "https://10.151.26.181:8443/SendText/ByKey/57d470e6-5a0e-4f68-a7f4-
dec170aee0d3" -H "accept: application/json; charset=utf-8"

AMR String Monitoring using SQL

select * from send_text_view where namekey = '57d470e6-5a0e-4f68-a7f4-dec170aee0d3';

AMR String Monitoring Using RabbitMQ

inbound.SendText

outbound.SendText

AMR Status Monitoring Details

This section provides details for monitoring individual AMR status.

Chapter 6: AMR Data and Faults

Additional Information: Detailed information such as location and battery state
can be obtained by accessing associated DataStore values. Refer to DataStore on
page 23 for more information.

Version Information: As of FLOW 2.0 (Integration Toolkit version 1.1.0) the list
of AMRs provided by the Integration Toolkit will reflect only those currently
attached to the Fleet Manager, with robots removed and/or added within 10
seconds of their addition or removal from the fleet.

The following table describes the AMR Status Monitoring item schema.

Table 6-3. AMR Status Monitoring Item Schema

Item Description Data Type

namekey Unique identifier of an AMR (same as the name of
the AMR provided in the fleet).

String

status Available, InProgress, Unavailable, Unavailable_
Busy, Unavailable_NeedsAssistance,
AvailableForJobs

subStatus Unallocated, Allocated, Available, Fault,
BeforePickup, BeforeDropoff, BeforeEvery, Before,
Driving, After, AfterEvery, AfterPickup, After-
Dropoff, ModeIsLocked, Parking, Parked, Docking,
Docked, DockParking, DockParked, ForcedDock-
ing, ForcedDocked, Interrupted, Inter-
ruptedButNotYetIdle, OutgoingArclConnectionLost,
EstopPressed, EstopRelieved, MotorsDisabled,
Lost, AvailableForJobs, Buffering, Buffered

AMR StatusMonitoring Using REST

Use the following REST calls to monitor AMR status.

Table 6-4. AMR Status Monitoring REST Call Resources

Method Resource Function

GET /Robot/ByKey/{namekey} Get AMR status by AMR
name (namekey).

GET /Robot/History?sinceTime={time millis} Get a list of AMR history
entities that have been
updated since the given
time.

GET /Robot/History?sinceTime={time millis}&namekey=
{namekey}

Get a list of AMR history
entities for a specific
namekey that have been
updated since the given
time.

GET /Robot/ByStatus/{Status} Get a list of AMR entities

20964-000 Rev. C Fleet Operation Workspace Core Integration Toolkit
User's Manual

59

60 Fleet Operation Workspace Core Integration Toolkit
User's Manual

20964-000 Rev. C

6.1 AMR Data

Method Resource Function

filtered by status.

GET /Robot/BySubStatus/{SubStatus} Get a list of AMR entities
filtered by SubStatus.

GET /Robot/UpdatedSince?sinceTime={time millis} Get a list of AMR entities
that have been updated
since the given time.

AMR Status Monitoring JSON Schema

{
"namekey": "string",
"upd": {
"millis": "long"
},
"status": "Available, InProgress, Unavailable, Unavailable_Busy,
Unavailable_NeedsAssistance, AvailableForJobs",
"subStatus": "Unallocated, Allocated, Available, Fault, BeforePickup,
BeforeDropoff, BeforeEvery, Before, Driving, After, AfterEvery,
AfterPickup, AfterDropoff, ModeIsLocked, Parking, Parked, Docking,
Docked, DockParking, DockParked, ForcedDocking, ForcedDocked, Interrupted,
InterruptedButNotYetIdle, OutgoingArclConnectionLost, EstopPressed,
EstopRelieved, MotorsDisabled, Lost, AvailableForJobs, Buffering,
Buffered"

}

AMR Status Monitoring JSON Example

Response example after GET request https://[IP]:8443/Robot/ByStatus/Available :

{
"namekey": "Robot154",
"upd": {
"millis": "1553904366723"
},
"status": "Unavailable_Busy",
"subStatus": "InterruptedButNotYetIdle"

}

cURL Command String Example

To get status information about available AMRs:

curl [options] -X GET "https://[IP]:8443/Robot/ByStatus/Available" -H "accept:
application/json; charset=utf-8"

AMR Status Monitoring Using SQL
SELECT namekey, status, sub_status FROM robot_view WHERE status LIKE 'Available%';

Chapter 6: AMR Data and Faults

AMR Status Monitoring Using RabbitMQ

outbound.Robot

AMR Licensing Status

This section provides details for obtaining the license status of an AMR using the LicenseInfo
task.

License details are refreshed every 5 minutes. The SQL database always contains the latest
license info.

Additional Information: AMR license status can also be obtained using
SetNetGo. Refer to the Fleet Operations Workspace Core User's Manual (Cat. No.
I635) for more information.

IMPORTANT: This operation is not supported by RabbitMQ.

The following table provides AMR Licensing Status item schema.

Table 6-5. AMR Licensing Status Item Schema

Item Description Data Type

namekey Unique identifier of each license object. String

keyid License type code (internal use only).

sourceName Device name.

deviceName Device type.

featureName Describes license detail.

featureNameDetail

perpetual Current license state. Boolean

expired

expirationTime License expiration date and time, including
UTC offset.

String

AMR License Status Using REST

Use the following REST calls to obtain AMR license status.

Table 6-6. AMR License Status REST Call Resources

Method Resource Function

GET /LicenseInfo/ByKeyId/{KeyId} Get a list of LicenseInfo entit-
ies filtered by KeyId.

GET /LicenseInfo/UpdatedSince?sinceTime={time
millis}

Get a list of LicenseInfo entit-
ies updates since the given
time.

20964-000 Rev. C Fleet Operation Workspace Core Integration Toolkit
User's Manual

61

62 Fleet Operation Workspace Core Integration Toolkit
User's Manual

20964-000 Rev. C

6.1 AMR Data

AMR License Status JSON Schema
{

"namekey": "string",
"keyId": integer,
"sourceName": "string"
"sourceIp": "string",
"deviceName": "EM, Robot",
"featureName": "string",
"featureNameDetail": "string",
"perpetual": boolean
"expired": boolean
"expirationTime": "string"

}

AMR License Status JSON Example

Response example after GET request https://[IP]:8443/LicenseInfo/ByKeyId/147124670 :

{
"namekey": "147124670-200-EnterpriseManager",
"keyId": 147124670,
"sourceName": "EnterpriseManager",
"deviceName": "EM",
"featureName": "LicenseType_LicenseCore",
"featureNameDetail": "Fleet Operations Workspace Core",
"perpetual": false,
"expired": false,
"expirationTime": "2024-55-04 03:55:00 PST"

},
{

"namekey": "147124670-203-EnterpriseManager",
"keyId": 147124670,
"sourceName": "EnterpriseManager",
"deviceName": "EM",
"featureName": "LicenseType_Simulator",
"featureNameDetail": "Fleet Simulator",
"perpetual": true,
"expired": false

},
{

"namekey": "147124670-205-EnterpriseManager",
"keyId": 147124670,
"sourceName": "EnterpriseManager",
"deviceName": "EM",
"featureName": "LicenseType_FeaturePack1",
"featureNameDetail": "Cell Alignment Positioning System (CAPS)",
"perpetual": true,
"expired": false

},
{

"namekey": "147124670-206-EnterpriseManager",
"keyId": 147124670,
"sourceName": "EnterpriseManager",
"deviceName": "EM",
"featureName": "LicenseType_iQ",
"featureNameDetail": "Fleet Operations Workspace iQ",
"perpetual": false,
"expired": false,
"expirationTime": "2024-55-04 03:55:00 PST"

Chapter 6: AMR Data and Faults

}

cURL Command License Status Example

To obtain the AMR license status using the GET method:

curl -X GET "https://[IP]:8443/LicenseInfo/ByKeyId/147124670" -H "accept:
application/json; charset=utf-8"

AMR License Status using SQL
select * from license_info_view where key_id = 147124670;

6.2 AMR Faults
AMR faults can be monitored with the Integration Toolkit.

All AMR faults are created independent of the Integration Toolkit.

AMR Fault Monitoring

This section provides details for monitoring all AMR faults. These functions can be used to
indicate when an AMR has a problem and can provide information about AMR fault recov-
ery.

AMR Fault Monitoring Details

The following table describes the AMR Fault item schema.

Table 6-7. AMR Fault Item Schema

Item Description Data Type

namekey Unique identifier of a fault entity. String

upd Timestamp when this record was last updated. Long

robot Name of AMR with fault state set. String

active Current fault state. Boolean

blockDriving Block Driving fault.

driving Driving fault.

critical Critical fault.

clearedOnGo Fault clear on go.

clearedOnAck Fault clear on acknowledge.

application Application fault.

20964-000 Rev. C Fleet Operation Workspace Core Integration Toolkit
User's Manual

63

64 Fleet Operation Workspace Core Integration Toolkit
User's Manual

20964-000 Rev. C

6.2 AMR Faults

Item Description Data Type

name Fault name. String

type Fault type.

shortDescription Short description of fault.

longDescription Long description of fault.

AMR Fault Monitoring Using REST

Use the following REST calls to monitor AMR faults.

Table 6-8. AMR Fault Monitoring REST Call Resources

Method Resource Function

GET /RobotFault/ByKey/{namekey} Get AMR fault by namekey.

GET /RobotFault/UpdatedSince?sinceTime={time
millis}

Get a list of AMR fault entities
that have been updated since
the given time.

GET /RobotFault/History?sinceTime={time millis} Get a list of AMR fault history
entities that have been updated
since the given time.

GET /RobotFault/History?sinceTime={time
millis}&namekey={namekey}

Get a list of AMR fault history
entities for a specific namekey
that have been updated since
the given time.

GET /RobotFault/ByRobot/{AMR} Get a list of AMR fault entities
filtered by AMR.

GET /RobotFault/ByType/{Type} Get a list of AMR fault entities
filtered by type.

GET /RobotFault/ByName/{Name} Get a list of AMR fault entities
filtered by name.

GET /RobotFault/ByActive/{Value} Get a list of AMR fault entities
filtered by active state.

Chapter 6: AMR Data and Faults

AMR Fault Monitoring JSON Schema

{
"namekey": "string",
"upd": {

"millis": "long"
},

"robot": "string",
"active": boolean,
"blockDriving": boolean,
"driving": boolean,
"critical": boolean,
"clearedOnGo": boolean,
"clearedOnAck": boolean,
"application": boolean,
"name": "string",
"type": "string",
"shortDescription": "string",
"longDescription": "string"

}

AMR Fault Monitoring JSON Example

Response example after GET request https://[IP]:8443/RobotActive/false :

{
"namekey": "Robot154:Fault1",
"upd": {
"millis": "1553904236251"

},
"robot": "Robot154",
"active": false,
"blockDriving": false,
"driving": false,
"critical": false,
"clearedOnGo": false,
"clearedOnAck": false,
"application": true,
"name": "Fault1",
"type": "Fault_Application",
"shortDescription": "Fault1 Desc",
"longDescription": "Fault1 Long Desc"

}

cURL Command String Example

To get information about AMR with active faults using the GET method:

curl [options] -X GET "https://[IP]:8443/RobotFault/ByActive/true" -H "accept:
application/json; charset=utf-8"

AMR Fault Monitoring Using SQL
SELECT * FROM robot_fault_view WHERE active = true;

20964-000 Rev. C Fleet Operation Workspace Core Integration Toolkit
User's Manual

65

66 Fleet Operation Workspace Core Integration Toolkit
User's Manual

20964-000 Rev. C

6.2 AMR Faults

AMR Fault Monitoring Using RabbitMQ

outbound.RobotFault

Appendices

A.1 SQL Database Schema
The following table view names are available in the IntegrationDB.

data_store_value_view

dropoff_view

goal_view

job_cancel_view

job_history_view

job_request_detail_view

job_request_view

job_segment_history_view

job_segment_modify_view

job_segment_view

job_view

license_info_view

pickup_dropoff_view

pickup_view

robot_fault_history_view

robot_fault_view

robot_history_view

robot_view

send_text_view

subscription_config_view

A.2 REST Calls
This section provides details for all supported REST calls.

/DataStoreItem/ByCategory/{Category}

Get a list of DataStoreItem entities filtered by Category.

Request Type: GET

/DataStoreItem/ByDisplayName/{DisplayName}

Get a list of DataStoreItem entities filtered by DisplayName.

20964-000 Rev. C Fleet Operation Workspace Core Integration Toolkit
User's Manual

67

68 Fleet Operation Workspace Core Integration Toolkit
User's Manual

20964-000 Rev. C

A.2 REST Calls

Request Type: GET

/DataStoreItem/ByGroupName/{GroupName}

Get a list of DataStoreItem entities filtered by GroupName.

Request Type: GET

/DataStoreItem/ByItemName/{ItemName}

Get a list of DataStoreItem entities filtered by ItemName.

Request Type: GET

/DataStoreItem/ByKey/{namekey}

Get DataStoreItem by namekey.

Request Type: GET

/DataStoreItem/BySource/{Source}

Get a list of DataStoreItem entities filtered by Source (Source is AMR name).

Request Type: GET

/DataStoreItem/ByType/{Type}

Get a list of DataStoreItem entities filtered by Type.

Request Type: GET

/DataStoreItem/UpdatedSince?sinceTime={time millis}

Get a list of DataStoreItem entities that have been updated since the given time.

Request Type: GET

/DataStoreValue/ByKey/{namekey}

Get DataStoreValue by namekey.

Request Type: GET

/DataStoreValue/UpdatedSince?sinceTime={time millis}

Get a list of DataStoreValue entities that have been updated since the given time.

Request Type: GET

/DataStoreValueLatest/{DataStore item name}

Return (without subscription) a one-time value for the DataStore item named.

Request Type: GET

Appendices

/DataStoreValueLatest/{DataStore item name}:{AMR name}

Return (without subscription) a one-time value for the DataStore item named on the AMR
named.

Request Type: GET

/DataStoreValueLatest/{DataStore item name}:*

Return (without subscription) a one-time value for the DataStore item named on all robots.

Request Type: GET

/Dropoff

Create Dropoff.

Request Type: POST

/Dropoff/{namekey}

Delete Dropoff by namekey.

Request Type: DELETE

/Dropoff/ByAssignedJobId/{AssignedJobId}

Get a list of Dropoff entities filtered by AssignedJobId.

Request Type: GET

/Dropoff/ByJobId/{JobId}

Get a list of Dropoff entities filtered by JobId.

Request Type: GET

/Dropoff/ByKey/{namekey}

Get Dropoff by namekey.

Request Type: GET

/Dropoff/ByRobot/{AMR}

Get a list of Dropoff entities filtered by AMR.

Request Type: GET

/Dropoff/ByStatus/{Status}

Get a list of Dropoff entities filtered by Status.

Request Type: GET

/Dropoff/UpdatedSince?sinceTime={time millis}

Get a list of Dropoff entities that have been updated since the given time.

Request Type: GET

20964-000 Rev. C Fleet Operation Workspace Core Integration Toolkit
User's Manual

69

70 Fleet Operation Workspace Core Integration Toolkit
User's Manual

20964-000 Rev. C

A.2 REST Calls

/Goal/ByKey/{namekey}

Get Goal by namekey.

Request Type: GET

/Goal/UpdatedSince?sinceTime={time millis}

Get a list of Goal entities that have been updated since the given time.

Request Type: GET

/Job/ByJobId/{JobId}

Get a list of Job entities filtered by JobId.

Request Type: GET

/Job/ByKey/{namekey}

Get Job by namekey.

Request Type: GET

/Job/ByLastAssignedRobot/{LastAssignedRobot}

Get a list of Job entities filtered by LastAssignedRobot.

Request Type: GET

/Job/ByStatus/{Status}

Get a list of Job entities filtered by Status.

Request Type: GET

/Job/History?sinceTime={time millis}

Get a list of Job history entities since the given time.

Request Type: GET

/Job/History?sinceTime={time millis}&namekey={namekey}

Get a list of Job history entities for a specific namekey since the given time.

Request Type: GET

/Job/UpdatedSince?sinceTime={time millis}

Get a list of job entities that have been updated since the given time.

Request Type: GET

/JobCancel

Create JobCancel.

Request Type: POST

Appendices

/JobCancel/{namekey}

Delete JobCancel by namekey.

Request Type: DELETE

/JobCancel/ByKey/{namekey}

Get JobCancel by namekey.

Request Type: GET

/JobCancel/UpdatedSince?sinceTime={time millis}

Get a list of JobCancel entities that have been updated since the given time.

Request Type: GET

/JobRequest

Create JobRequest.

Request Type: POST

/JobRequest/{namekey}

Delete JobRequest by namekey.

Request Type: DELETE

/JobRequest/ByAssignedJobId/{AssignedJobId}

Get a list of JobRequest entities filtered by AssignedJobId.

Request Type: GET

/JobRequest/ByJobId/{JobId}

Get a list of JobRequest entities filtered by JobId.

Request Type: GET

/JobRequest/ByKey/{namekey}

Get JobRequest by namekey.

Request Type: GET

/JobRequest/ByStatus/{Status}

Get a list of JobRequest entities filtered by Status.

Request Type: GET

/JobRequestDetail/ByKey/{namekey}

Get JobRequestDetail by namekey.

Request Type: GET

20964-000 Rev. C Fleet Operation Workspace Core Integration Toolkit
User's Manual

71

72 Fleet Operation Workspace Core Integration Toolkit
User's Manual

20964-000 Rev. C

A.2 REST Calls

/JobRequestDetail/UpdatedSince?sinceTime={time millis}

Get a list of JobRequestDetail entities that have been updated since the given time.

Request Type: GET

/JobRequest/UpdatedSince?sinceTime={time millis}

Get a list of JobRequest entities that have been updated since the given time.

Request Type: GET

/JobSegment/ByGoalName/{GoalName}

Get a list of JobSegment entities filtered by GoalName.

Request Type: GET

/JobSegment/ByJob/{Job}

Get a list of JobSegment entities filtered by Job namekey.

Request Type: GET

/JobSegment/ByKey/{namekey}

Get JobSegment by namekey.

Request Type: GET

/JobSegment/ByRobot/{AMR}

Get a list of JobSegment entities filtered by AMR.

Request Type: GET

/JobSegment/ByStatus/{Status}

Get a list of JobSegment entities filtered by Status.

Request Type: GET

/JobSegment/History?sinceTime={time millis}

Get a list of job segment history entities that have been updated since the given time.

Request Type: GET

/JobSegment/History?sinceTime={time millis}&namekey={namekey}

Get a list of job segment history entities for a specific namekey that have been updated since
the given time.

Request Type: GET

/JobSegment/UpdatedSince?sinceTime={time millis}

Get a list of job segment entities that have been updated since the given time.

Request Type: GET

Appendices

/JobSegmentModify

Create JobSegmentModify.

Request Type: POST

/JobSegmentModify/{namekey}

Delete JobSegmentModify by namekey.

Request Type: DELETE

/JobSegmentModify/ByKey/{namekey}

Get JobSegmentModify by namekey

Request Type: GET

/JobSegmentModify/BySegmentId/{SegmentId}

Get a list of JobSegmentModify entities filtered by SegmentId.

Request Type: GET

/JobSegmentModify/UpdatedSince?sinceTime={time millis}

Get a list of modified job segment entities updated since the given time.

Request Type: GET

/LicenseInfo/ByKeyId/{KeyId}

Get a list of LicenseInfo entities filtered by KeyId.

Request Type: GET

/LicenseInfo/UpdatedSince?sinceTime={time millis}

Get a list of LicenseInfo entities updates since the given time.

Request Type: GET

/Pickup

Create Pickup.

Request Type: POST

/Pickup/{namekey}

Delete Pickup by namekey.

Request Type: DELETE

/Pickup/ByAssignedJobId/{AssignedJobId}

Get a list of Pickup entities filtered by AssignedJobId.

Request Type: GET

20964-000 Rev. C Fleet Operation Workspace Core Integration Toolkit
User's Manual

73

74 Fleet Operation Workspace Core Integration Toolkit
User's Manual

20964-000 Rev. C

A.2 REST Calls

/Pickup/ByJobId/{JobId}

Get a list of Pickup entities filtered by JobId.

Request Type: GET

/Pickup/ByKey/{namekey}

Get Pickup by namekey.

Request Type: GET

/Pickup/ByStatus/{Status}

Get a list of Pickup entities filtered by Status.

Request Type: GET

/Pickup/UpdatedSince?sinceTime={time millis}

Get a list of Pickup job entities that have been updated since the given time.

Request Type: GET

/PickupDropoff

Create PickupDropoff.

Request Type: POST

/PickupDropoff/{namekey}

Delete PickupDropoff by namekey.

Request Type: DELETE

/PickupDropoff/ByAssignedJobId/{AssignedJobId}

Get a list of PickupDropoff entities filtered by AssignedJobId.

Request Type: GET

/PickupDropoff/ByJobId/{JobId}

Get a list of PickupDropoff entities filtered by JobId.

Request Type: GET

/PickupDropoff/ByKey/{namekey}

Get PickupDropoff by namekey.

Request Type: GET

/PickupDropoff/ByStatus/{Status}

Get a list of PickupDropoff entities filtered by Status.

Request Type: GET

Appendices

/PickupDropoff/UpdatedSince?sinceTime={time millis}

Get a list of PickupDropoff entities that have been updated since the given time.

Request Type: GET

/Robot/ByKey/{namekey}

Get AMR by namekey.

Request Type: GET

/Robot/ByStatus/{Status}

Get a list of AMR entities filtered by Status.

Request Type: GET

/Robot/BySubStatus/{SubStatus}

Get a list of AMR entities filtered by SubStatus.

Request Type: GET

/Robot/History?sinceTime={time millis}

Get a list of AMR history entities that have been updated since the given time.

Request Type: GET

/Robot/History?sinceTime={time millis}&namekey={namekey}

Get a list of AMR history entities for a specific namekey that have been updated since the
given time.

Request Type: GET

/Robot/UpdatedSince?sinceTime={time millis}

Get a list of AMR entities that have been updated since the given time.

Request Type: GET

/RobotFault/ByActive/{Active}

Get a list of RobotFault entities filtered by Active.

Request Type: GET

/RobotFault/ByKey/{namekey}

Get RobotFault by namekey.

Request Type: GET

/RobotFault/ByName/{Name}

Get a list of RobotFault entities filtered by Name.

Request Type: GET

20964-000 Rev. C Fleet Operation Workspace Core Integration Toolkit
User's Manual

75

76 Fleet Operation Workspace Core Integration Toolkit
User's Manual

20964-000 Rev. C

A.2 REST Calls

/RobotFault/ByRobot/{AMR}

Get a list of RobotFault entities filtered by AMR.

Request Type: GET

/RobotFault/ByType/{Type}

Get a list of RobotFault entities filtered by Type.

Request Type: GET

/RobotFault/History?sinceTime={time millis}

Get a list of AMR fault history entities that have been updated since the given time.

Request Type: GET

/RobotFault/History?sinceTime={time millis}&namekey={namekey}

Get a list of AMR fault history entities for a specific namekey that have been updated since
the given time.

Request Type: GET

/RobotFault/UpdatedSince?sinceTime={time millis}

Get a list of AMR fault entities that have been updated since the given time.

Request Type: GET

/SendText/ByKey/{id}

Get SendText by namekey.

Request Type: GET

/SendText/BySource/{Source}

Get a list of SendText entities filtered by Source.

Request Type: GET

/SendText/ByTaskKey/{TaskKey}

Get a list of SendText entities filtered by TaskKey.

Request Type: GET

/SendText/{id}

Delete SendText by ID.

Request Type: DELETE

/SendText/UpdatedSince?sinceTime={time millis}

Get a list of SendText entity updates since the given time. A default value of 0 can be used to
get all SendText strings.

Appendices

Request Type: GET

/SubscriptionConfig

Update SubscriptionConfig.

Request Type: PUT

/SubscriptionConfig/ByKey/{namekey}

Get SubscriptionConfig by namekey.

Request Type: GET

/SubscriptionConfig/UpdatedSince?sinceTime={time millis}

Get a list of SubscriptionConfig entities that have been updated since the given time.

Request Type: GET

/WaitTaskCancel

Cancel a wait state.

Request Type: POST

/WaitTaskState/{robot}

Check on the status of the wait state.

Request Type: GET

A.3 RabbitMQ Queues
This section provides a list of all available inbound and outbound queues for the RabbitMQ
communication channel.

Inbound Queues

inbound.Dropoff

inbound.JobCancel

inbound.JobRequest

inbound.JobSegmentModify

inbound.Pickup

inbound.PickupDropoff

inbound.SendText

inbound.SubscriptionConfig

Outbound Queues

outbound.DataStoreValue

outbound.datastore.X (X is any subscribed DataStoreValue for a Fleet Manager)

20964-000 Rev. C Fleet Operation Workspace Core Integration Toolkit
User's Manual

77

78 Fleet Operation Workspace Core Integration Toolkit
User's Manual

20964-000 Rev. C

A.3 RabbitMQ Queues

outbound.datastore.robot.X (X is any subscribed DataStore valid for an AMR)

outbound.Dropoff

outbound.Job

outbound.JobCancel

outbound.JobRequest

outbound.JobSegment

outbound.JobSegmentModify

outbound.Pickup

outbound.PickupDropoff

outbound.Robot

outbound.RobotFault

outbound.SendText

outbound.SubscriptionConfig

Authorized Distributor:

0322

 © OMRON Corporation 2022 All Rights Reserved. In
the interest of product improvement, specifications
are subject to change without notice.

Cat. No. I637-E-03

OMRON Corporation Industrial Automation Company

OMRON ELECTRONICS LLC
2895 Greenspoint Parkway, Suite 200
Hoffman Estates, IL 60169 U.S.A.
Tel: (1) 847-843-7900/Fax: (1) 847-843-7787

Regional Headquarters

OMRON EUROPE B.V.
Wegalaan 67-69, 2132 JD Hoofddorp
The Netherlands
Tel: (31)2356-81-300/Fax: (31)2356-81-388

 Contact: www.ia.omron.comKyoto, JAPAN

OMRON ASIA PACIFIC PTE. LTD.
No. 438A Alexandra Road # 05-05/08 (Lobby 2),
Alexandra Technopark,
Singapore 119967
Tel: (65) 6835-3011/Fax: (65) 6835-2711

OMRON (CHINA) CO., LTD.
Room 2211, Bank of China Tower,
200 Yin Cheng Zhong Road,
PuDong New Area, Shanghai, 200120, China
Tel: (86) 21-5037-2222/Fax: (86) 21-5037-2200

OMRON ROBOTICS AND SAFETY
TECHNOLOGIES, INC.
4225 Hacienda Drive, Pleasanton, CA 94588
U.S.A.

20964-000 C

	Chapter 1: Introduction
	1.1 Intended Audience
	1.2 Abbreviations and Terminology
	1.3 Notations
	Application Specific Placeholders

	1.4 System Requirements
	1.5 How to Get Help
	Related Manuals

	Chapter 2: Functions and Features
	Communication Channels
	2.1 RESTful Web Services
	REST Communication Channel Advantages
	REST Communication Channel Considerations

	2.2 SQL with PostgreSQL
	SQL Communication Channel Advantages
	SQL Communication Channel Considerations
	PostgreSQL Tables and Views

	2.3 RabbitMQ
	RabbitMQ Communication Channel Advantages
	RabbitMQ Communication Channel Considerations

	2.4 Software Management
	2.5 Security
	Integration Toolkit Password

	2.6 Namekey Concept

	Chapter 3: Getting Started
	3.1 PickupDropoff Job - REST Example
	3.2 PickupDropoff SQL Example
	3.3 RabbitMQ Python Examples
	Publish a Message to the inbound.PickupDroppoff Queue
	Consume Messages of the outbound.Job Queue

	Chapter 4: DataStore
	4.1 Common DataStore Use Cases
	4.2 DataStore Model
	DataStoreItem
	SubscriptionConfig
	DataStoreValue

	4.3 Obtaining Information about DataStore Items
	Using REST
	Using SQL

	4.4 Subscribing to DataStore Values
	Using REST
	Using SQL
	Using RabbitMQ

	4.5 Obtaining DataStore Values
	Using REST
	Using SQL
	Using RabbitMQ

	Chapter 5: Jobs
	Job Creation Steps
	5.1 Common Job Creation Use Cases
	5.2 Job Creation
	Creating Pickup Jobs
	Creating PickupDropoff Jobs
	Creating Dropoff Jobs
	Creating Job Request Job Types (Multi-segment)

	5.3 Monitoring of Jobs
	Job Monitoring Schema Entities
	Job Monitoring Details
	Job Segment Monitoring Details

	5.4 Job Segment Modification
	Job Segment Modification Details

	5.5 Job and Job Segment Cancellation
	Job and Job Segment Cancellation Details

	5.1 WaitTaskCancel

	Chapter 6: AMR Data and Faults
	6.1 AMR Data
	AMR String Monitoring Details
	AMR Status Monitoring Details
	AMR Licensing Status

	6.2 AMR Faults
	AMR Fault Monitoring
	AMR Fault Monitoring Details

	Appendices
	A.1 SQL Database Schema
	A.2 REST Calls
	A.3 RabbitMQ Queues

